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Preface 

One of the crucial tasks to be performed towards the realization of the vision of the Semantic 
Web is the encoding of human knowledge in ontologies using formal representation 
languages. Simply creating an ontology is not enough though; ontologies, just like any 
structure holding knowledge, need to be updated for several reasons, including a change in the 
world being modeled, a change in users' needs, the acquisition of knowledge previously 
unknown, classified or otherwise unavailable or a design flaw in the original 
conceptualization. In all these cases, the representation of our knowledge in the ontology 
should be modified so as to form a more accurate or adequate conceptualization of the 
domain. Such a modification presents several difficulties from both the practical and the 
theoretical point of view, as it is not always clear what the expected, or desired, result of any 
particular modification should be, nor how such a result can be determined.  
 
The purpose of the International Workshop on Ontology Dynamics (IWOD-07) was to bring 
together researchers interested in the field of ontology dynamics in order to discuss and 
analyze important characteristics, open research issues and recent research developments on 
the field.  
 
We received 14 submissions on various topics related to ontology dynamics; the material 
collected in this volume is the result of a careful evaluation process, which selected 8 
contributions for presentation in the workshop and inclusion in these proceedings. 
 
We would like to thank our fellow organizers, Grigoris Antoniou, Jeff Pan and Dimitris 
Plexousakis for their help in making this workshop a reality, the Program Committee 
members and external reviewers for their excellent reviews which ensured that the best 
possible material was presented in the workshop and appears in these proceedings, and, of 
course, the organizers of the ESWC-07 conference for supporting this workshop. Last but not 
least, we would like to thank the authors of all submitted papers, as well as all the participants 
of the workshop for their interest in IWOD-07. 
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Mathieu d’Aquin 

(editors) 
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Ontology Evolution Analysis with OWL-MeT 

Natalya Keberle1, Yuriy Litvinenko,  
Yuriy Gordeyev, Vadim Ermolayev 

Dept. of IT, Zaporozhye National University,  
Ukraine 

nkeberle@gmail.com, jurlit@rambler.ru, 
ygchaos@mail.ru, vadim@ermolayev.com 

Abstract. Works on ontology versioning pay special attention to the logical 
analysis of ontology evolution. The paper considers extensible declarative 
approach to ontology change description. Metric temporal description logic 
with metric temporal modalities “future n” and “past n” and hybrid satisfaction 
operator @ is proposed as the logical basis for declarative ontology evolution 
analysis. Underlying time structure assumed to be linear and discrete, which is 
acceptable for modeling of ontology versions sequence. Introduced is OWL-
MeT – metric extension of the Web ontology language OWL, which is 
supported with a reasoning engine under development on the basis of Pellet 
reasoner. 

1 Introduction 

Ontology versioning and change detection are one of the Semantic Web research 
challenges [1]. Many previous efforts at providing ontology versioning have focused 
on the differentiation of the conceptual and explication changes [2], on the 
identification of an ontology in the Semantic Web [2], [3], on ontology change 
operations and their effects at the instances level [3], [4]. Change detection between 
similar ontologies or between versions of the same ontology when there is no version 
log is discussed in [5], [6]. Change detection and propagation between versions of the 
same ontology, when there is a version log, is investigated in [7]. Special attention is 
paid to the change management organization for distributed and modular ontologies 
[8], [9], inconsistent ontologies [10]. 

The approach reported in the paper focuses on the analysis of ontology evolution, 
namely, compatibility and interchangeability of ontology versions, and proposes a 
formal declarative basis for such analysis. Indeed, an ontology is a formal theory [11], 
and for any two versions of the same ontology it is interesting to know whether these 
versions are compatible from the logical point of view, whether it is possible to use 
definition of an object in one version to access instances of that object in another 
version. 

                                                           
1 The work of the author is partially supported in frame of PSI project. Performance Simulation 

Initiative (PSI) is the R&D project of Cadence Design Systems, GmbH. 
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Presented research aims at the development of logical means which will facilitate 
the various tasks of ontology evolution analysis. It is proposed to use temporal logic, 
and to combine temporal logic with explicit use of metric properties of time. 
Propositional metric temporal language (first introduced by A.Prior [12]) and calculus 
(investigated in [13]) serve as the basis for the presented research. Constructive proofs 
of soundness, completeness and decidability of propositional metric temporal calculus 
[13] are based on the tableau technique. 

The contributions of the paper are: (i) further development of proof-theoretic 
approach – introduction of metric temporal description logic ALCIO(MT) with 
additional sort of nominals representing ontology versions; (ii) introduction of OWL-
MeT – metric extension of OWL with constructs of ALCIO(MT) in a way suitable 
for the Semantic Web applications; (iii) introduction of reasoning engine for OWL-
MeT, based on Pellet2 – the open-source OWL-DL reasoner in Java. 

The paper is organized as follows: the Section 2 presents the related work and the 
motivation to enhance analytical means for ontology evolution; metric temporal 
description logic ALCIO(MT) with metric temporal modalities and hybrid 
satisfaction operator is described in Section 3; Section 4 introduces OWL-MeT – the 
extension of OWL with the constructs of ALCIO(MT) and describes Pellet-based 
reasoning engine for OWL-MeT; examples of ontology evolution analysis with 
OWL-MeT are given in the Section 5, and Section 6 presents some conclusions made 
in frame of the presented research. 

2 Related Work and Motivation 

Approaches to ontology changes detection and storage basically work on the 
syntactic layer. In [2] it was proposed to use rule-based approach to change detection. 
The idea behind the approach is to precisely formulate what can be considered as 
change for every syntactical construct of ontology description language. The complete 
list of possible change operations for OWL-Lite was introduced in [3] in the form of 
"the ontology of ontology change", which is used to mark-up change logs. The 
framework for ontology change management, OntoView, was described in [5], [3]. 
Some disadvantages of the rule-based approach to change detection are investigated 
in [7]. It was shown that in case of multiple changes occurred in the ontology some 
changes may interfere, and in the worst case even cancel one another, as far as change 
detection rules work independently of each other. 

Proof-theoretic approach to ontology evolution analysis, first introduced in 
MORE [14], [4] overcomes the drawbacks of other approaches. First of all, it is 
ontology language-independent: meta-level temporal language LTLm was used for 
changes analysis. Secondly, reasoning over ontology changes instead of querying 
changes was proposed, which allowed to rely not only on heuristics/rules of change 
detection, but to deduce complex changes. Finally, usage of temporal logic is natural 
as far as changes are characterized with time moments, when they occur. 

                                                           
2 Pellet homepage is http://pellet.owldl.com  
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However, analysis of [14] has shown that the usage of temporal logic LTLm has 
some drawbacks. LTLm is past-oriented, therefore complex statements binding future 
and past moments can not be described. Further, statements about states of affairs in 
two ontology versions which are at a given distance from each other, without naming 
these versions are impossible. Finally, the developers of MORE [4] have outlined for 
the future work the convenience of explicit usage of version names in a temporal 
formula, i.e. hybridization of LTLm. 

Interesting ideas for the detailed change analysis of both the extensional and the 
structural levels are proposed in [15] for evolving collections of XML documents. 
The authors of [15] provide a classification of query types for the analysis of 
structural changes occurred in the versions of an XML document: structural 
projection, historical queries, temporal selection, content-based selection.  Use of 
these query types might seriously enhance the ontology versioning frameworks. The 
steps in this direction are made in the SEKT3 project [4].  

The review of the systems and the approaches presented above shows that 
detailed analysis of ontology evolution can be facilitated with the two components: (i) 
– there are either all versions of the ontology or the version log for that ontology, and 
(ii) – reasoning over the versions is performed with help of temporal logics. The 
motivation of the approach proposed in the paper is based on the idea of an ontology 
versioning system facilitating the analysis of evolution. Following [14] and [15] 
possible analytical queries may include:  
− Reasoning queries: 

• (non-)derivability of a fact in one version with respect to another version, i.e. 
whether the fact belongs to the intersection/difference of ontology models 

• (non-)derivability of a fact in a given version 
− Meta-level ontology-specific queries:  

• compatibility of versions (e.g. "Is the version 1 is subsumed by the version 5?")  
• compatibility of concept definitions (e.g. "Is the concept Child defined in the 

version 1 subsumed by the concept Child taken from the version 5?") etc. 
• most common part of concept definitions taken from different version (e.g. 

"What properties remain unchanged in the concept Child from the version 5 to 
the version 10") etc. 

• detection of conceptual relations [3] between the versions of ontology (e.g. 
"What version subsumes the version 5?") 

− Retrieval queries 
• temporal selection (e.g. "Get the version 5") 
• historical queries (e.g. "What was added in the version 5?", "What was added in 

the version 5 as compare to the version 2?", "What become obsolete in the 
version 5 as compare to the version 10?") 

• structural projection (e.g. "Get the definition of the concept Child in the version 
5", "Get the new/retired/unchanged instances of the concept Child in the version 
5 as compare to the version 2") 

                                                           
3 MORE is developed in frame of SEKT project, http://www.sekt-project.org  
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• content-based selection (e.g. "Check all the versions and get all the concept 
definitions where role hasChild is used", "Check the versions from 5 to 10 and 
get all the concept definitions where the role hasChild is used").  

Presented research assumes that all ontology versions are available for analysis. 
Its usage in the case of presence of a version log goes beyond the scope of the paper. 

Mentioned queries explore the concept of time moment (expressed in an ontology 
version number). Moreover, as the time moments / ontology version numbers are used 
explicitly in queries, there is a need to have correspondent means in underlying logic 
formalism for referencing time points explicitly. 

Hybrid logics [16], [17] which allow naming particular possible world may 
provide means for referencing time moments explicitly in a formulae. Metric 
temporal logics [18] allow to reference time moments at a given distance to the future 
and to the past. 

First introduced in [18], metric modalities "future n" and "past n" were then 
investigated by Clifford in [19], where the semantics of the metric temporal language 
was given. Other temporal modalities (such as Scott's unary temporal operator "next 
instant" [12] or Kamp's binary temporal operators "until" and "since" [12]) can be 
defined via metric ones. Later on metric modalities were extensively learnt in the 
research on real-time logic, and in the recent time, in the research on distance logics 
[20]. Composition of hybrid and metric temporal logic may provide means necessary 
for ontology evolution analysis. 

3 Metric Temporal Description Logic 

Highly-expressive and decidable Description Logics are of great interest in the 
Semantic Web applications. Known decidable temporal description logics (see, e.g. 
[21]) focus on topological properties of time, and provide descriptive means for both 
interval-based and point-based time structure. Such logics are usually seen as 
combination of a propositional modal logic (as far as description logics have strict 
correspondence with propositional multimodal logics) and temporal (therefore, also 
modal) logic. Expressive power of obtained composed logic depends on the degree of 
interaction between two modal logics. 

Metric description logics are relatively new members of the description logics 
family. The research on metric description logics was initiated with the development 
of logic of distances [20]. Since then many classes of such logics are investigated for 
the purpose of decidability.  

Metric temporal description logic ALCIO(MT ) for point-based time structure is 
the composition of ALCIO – description logic with role inverses and nominals and 
propositional metric temporal logic. Particularly, ALCIO(MT) allows application of 
temporal and hybrid operators only to concepts (both non-temporal and temporal), 
and role restrictions are not applied to temporal concepts. 

Let BA,  denote atomic non-temporal concepts, R  - atomic role, FE,  - 
complex non-temporal concepts, P  - complex role, DC,  - complex temporal 
concept, }{o - object nominal (denoting an individual in some possible world),  }{a  - 
temporal nominal (denoting possible world, e.g. ontology version).  
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Then the rules presented in the Fig.1 generate complex concepts/roles. 
 

E, F  → A  | top | bottom | E u F | E t F | ¬ E | ∃R. E  | ∀R. E | }{o   
    P  →   R  | 1−P  
C, D →   E  | }{a | C intersection D | C union D | not C | C@ }{a | future n C |  
                    | past n C | somefuture C | somepast C | allfuture C | allpast C 

Fig. 1. Syntax rules for ALCIO(MT) concepts/roles construction. 

If C and D are temporal concepts, and {a} is a temporal nominal, then 
C equivalent D, C subclassof D, C(a) are temporal formulae. If ϕ and ψ  are temporal 
formulae, then ϕ union ψ , ϕ intersection ψ , not ϕ  are also temporal formulae. 

ALCIO(MT) is interpreted over Kripke model M >Δ=< VIRRdist PF ,},,{,, , 
where },{ Zkk ∈Δ=Δ  is a set of possible worlds, kΔ  is a set of individuals in k-th 
possible world, }0{: ∪→Δ×Δ Ndist  is a metric on Δ , PF RR ,  are accessibility 
relations, I  is an interpretation function, and V is a hybrid valuation function.  

Interpretation I  associates with each kΔ  an ALCIO-interpretation 
>⋅Δ=< )(,)( kIkkI . 

Temporal nominals are used as identifiers of ontology versions. Satisfaction 
operator @{a}, where {a} is considered as an identifier of an ontology version, is 
adopted from hybrid logics [17].  

Additionally, let function Zaden →}{:  be an encoding of temporal nominals into 
integers. Then, given temporal nominal {a}, hybrid valuation V assigns {a} a unique 
world )(adenΔ  - singleton subset of Δ .  

The model-theoretic semantics of ALCIO(MT)-specific operators is defined as 
follows: 

)()( kICnfuture   },:{ )( jIk Conkjo ∈+=∃Δ∈=  
)()( kICnpast   },::{ )( jIk Conjkjo ∈+=∃Δ∈=  
)()( kICsomefuture },:{ )( jIk Cokjo ∈≥∃Δ∈=  
)(kICsomepast ) ( },:{ )( jIk Cokjo ∈≤∃Δ∈=  
)()( kICallfuture },:{ )( jIk Cokjo ∈≥∀Δ∈=  
)()( kICallpast },:{ )( jIk Cokjo ∈≤∀Δ∈=  
)(})@{( kIaC  }{ ))(( adenICo∈=  

For the purposes of ontology evolution analysis we restrict the domain Δ  to be a 
finite linear sequence of ontology versions – time structure, or in terms of [14] 
version space. Time structure is a finite sequence of temporal nominals, each of 
which identify particular ontology version. Time structure is ordered with the 
precedence relation, set between encodings of temporal nominals: if den(a1)<den(a2), 
then the version identified with a1 precedes the version identified with a2.  
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Satisfiability problem for hybrid multi-modal tense logic with nominals, whose 
syntactic variant is ALCIO(MT), is EXPTIME-hard [16]. 

Releasing the domain Δ  from being finite leads to analysis of the decidability 
issues for nonbranching discrete transitive and reflexive unbounded frame. Tableau 
rule set for hybrid and metric operators provides a ground for constructive proof of 
decidability of satisfiability problem for ALCIO (MT). Termination of the decision 
procedure is controlled with the application of looptest rules (which are applicable for 
transitive frames, see, e.g. [22]), and of the formulae marking rules (see, e.g. [23]). 
However, the satifiability problem is still EXPTIME-hard, as the results in [16] were 
obtained for arbitrary frame. Results obtained in [24] for NP-completeness of 
satisfiability problem for linear frame (irreflexive, transitive and trichotomous) seem 
not to be applicable here, as the behaviour of metric operators "future n" / "past n" 
when n = 0 requires the accessibility relations to be reflexive. 

4 OWL-MeT 

OWL-MeT (abbreviation for OWL-MetricTime) is built on top of the language 
OWL; it has been assigned namespace owlmet. Main constructs for definition of 
temporal concepts of OWL-MET are TClass and TRestriction. TClass, representing 
named temporal concepts, is the direct subclass of rdfs:Class, TRestriction, 
representing unnamed temporal restrictions, is the subclass of owlmet:TClass. 
Standard OWL class owl:Class is defined as subclass of owlmet:TClass, therefore all 
OWL concepts are also OWL-MeT temporal concepts. Indeed, each non-temporal 
concept A (which is the instance of owl:Class) can be considered as equivalent to an 
instance of unnamed temporal restriction future 0 A. In OWL-MeT temporal concepts 
are allowed to form unions, intersections and complements, to define axioms of 
equivalence and subsumption between them.  

OWL-MeT introduces the special sort of nominals for ontology versions – 
temporal nominals, or instants. Instant is also the subclass of owlmet:TClass. 
TimeStructure construct fixes the sequence of instants and it is defined with help of 
rdf:sequence construct. 

Metric temporal operators are defined as instances of rdf:property, namely 
"future", "allfuture", "past", "allpast", "somefuture", "somepast"; hybrid 
satisfaction operator "at", and its supplementary operator "happens" are also the 
instances of rdf:property.  

The abstract syntax of OWL-MeT extends the OWL abstract syntax, OWL-MeT 
new constructs are presented in the Fig. 2. Complete definition4 of OWL-MeT 
includes abstract syntax definition, mapping to RDF graphs and usage examples.  

The reasoning engine for OWL-MeT is now under development. It is grounded 
on the open-source Java-based OWL-DL reasoner Pellet. Jena 2.45 is used for the 
validation of OWL-MeT constructs and for correspondent RDF models building.  

                                                           
4 OWL-MeT Web site: http://ermolayev.com/owl-met 
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Fig. 2. Abstract syntax of OWL-MeT (the added part as compare to OWL). 

Extension of Pellet to reason over OWL-MeT descriptions requires also 
reworking of normalization and internalization procedures, and extending of the 
decision procedure with metric and hybrid tableau rules. 

In short, hybrid extension of tableau rules creates for each temporal nominal {a} 
presented in a given OWL-MeT formula a particular tableau, and establishes 
accessibility relations between these tableaux depending on values of den(a). Metric 
extension of tableau rules describes as movement across the tableaux sequence using 
that accessibility relation, as well as creation of a particular tableau. For example, 
operator "future 1 C" checks if the tableau at the distance 1 to the future exists, if not - 
creates that tableau and establishes accessibility relation RF between the initial tableau 
and that new. Operator "future n C" is considered as "future 1 future (n-1) C". 

Operators "allfuture C" and "allpast C" due to the transitivity of time copy C to 
all tableaux accessible via accessibility relation RF (RP) from the given one. Operators 
"somefuture C" and "somepast C" create alternating tableau branches (due to the 
reflexivity of the model M): one branch will include C, and the other will include 
"future 1 somefuture C"/ "past 1 somepast C" respectively. Tableau termination is 
controlled with the help of adopted looptest rules, avoiding the introduction of both 
ALCIO -node fully contained in a predecessor ALCIO - node, and the introduction 
of a temporal nominal node fully contained in a predecessor node. 

                                                                                                                                           
5 Jena is the open-source Java framework for building Semantic Web applications. It provides a 

programmatic environment for RDF(S), OWL, SPARQL and includes a rule-based inference 
engine. Available at http://jena.sourceforge.net  

axiom ::= temporalAxiom | owlAxiom 
temporalAxiom::= 'TClass(' classID modality {annotation} {description}')' | 

| 'DisjointClasses(' description description { description } ')' | 
| 'EquivalentClasses(' description { description } ')' | 
| 'SubClassOf(' description description ')' | 
| 'EnumeratedClass(' classID { annotation } { individualID }')' | 
| 'TimeStructure(' instantID {instantID} ')'  

modality::= 'complete' | 'partial' 
description::= classID | 

| trestriction | 
| resriction | 
| 'unionOf(' { description } ')' | 
| 'intersectionOf(' { description } ')' | 
| 'complementOf(' description ')' | 
| 'oneOf(' { individualID } ')' 

trestriction::= 'TRestriction(' timeProperty ')' 
timeProperty 'allfuture(' description ')' | 'somefuture(' description ')' | 

| 'allpast(' description ')' | 'somepast(' description ')' | 
| 'future(' non-negative-integer ')' modality description | 
| 'past(' non-negative-integer ')' modality description | 
| 'at(' instantID ')' modality description 
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Consider several examples of temporal concept definitions. Let concept 
"PerpetuumMobile" be defined as some engine that will work always in the future. 
Correspondent OWL-MeT definition with the non-metric operator "allfuture" may be 
as shown on the Fig. 3. Statements about a temporal concept, relating both future and 
past moments use metric operators "future n" and "past n": for example, the definition 
of "Student" as "UniversityEntrant" in one moment before is shown on the Fig. 4. 
Finally, statements with explicit naming of time moments use hybrid satisfaction 
operator "at". Mapping to RDF(S) due to certain limitations of RDF(S) had required 
the introduction of supplementary operator, which is called "happens" and which 
allows to partition temporal concepts occurring at different points. The definition of 
"HappyFather" (see Fig.5) is given as the union of "HappyFatherInXXCentury" and 
"HappyFatherInXXICentury", where the disjuncts are defined at different time 
moments. Time moments "XXCentury" and "XXICentury" are the individuals of the 
owlmet:TInstant. 

 

 
Fig. 3. Definition of “PerpetuumMobile”. 

 
Fig. 4. Definition of “Student”. 

 

<owlmet:TClass rdf:ID="Student"> 
 <rdfs:subClassOf> 

<owlmet:TRestriction> 
<owlmet:past rdf:datatype="&xsd;#NonNegativeInteger"> 1</owlmet:past> 
<owlmet:equivalentClass> <owlmet:TClass rdf:about="#UniversityEntrant"/> 
</owlmet:equivalentClass> 
</owlmet:TRestriction> 
</rdfs:subClassOf> 

</owlmet:TClass> 

<owlmet:TClass rdf:ID="PerpetuumMobile"> 
 <rdfs:subClassOf> 
 <owlmet:TRestriction> 
 <owlmet:allfuture> 
   <owlmet:TClass> 
     <owl:intersectionOf rdf:parseType="Collection"> 
     <owl:Class rdf:about="#Engine"/> 
     <owl:Restriction> 
     <owl:allValuesFrom> <owl:Class rdf:about="#Thing"/> </owl:allValuesFrom> 
     <owl:onProperty> <owl:ObjectProperty rdf:about="#works"/> </owl:onProperty> 
     </owl:Restriction> 
     </owl:intersectionOf> 
 </owlmet:TClass>  
 </owlmet:allfuture> 
 </owlmet:TRestriction> 
 </rdfs:subClassOf> 
</owlmet:TClass> 
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Fig. 5. Definition of “HappyFather”. 

5 Ontology Evolution Analysis with OWL-MeT 

Let us show how OWL-MeT may serve for the task of ontology evolution 
analysis. Recall that it was proposed in the Section 2 to differentiate three types of 
analytical queries: retrieval queries (or, queries on the structure of vocabulary), meta-
level ontology queries and reasoning queries.  

Reasoning queries answer the questions about derivability of a certain fact across 
versions. For example, to answer the question “Are individuals of concept C in a 
version v5 derivable both in versions v2 and v10?” one may check satisfiability of a 
temporal formula (C @{v5}) subclassof (C @{v2} intersection C @{v10}).  

The question “What are new individuals of concept C in a version v5, which were 
not present two versions before” may be answered by checking satisfiability of a 
temporal concept (C intersection ((past 2) not C)) @{v5}.  

The question “What are individuals of concept C in a version v5, which are not 
derivable at a distance of two versions in the future?” may be answered by checking 
satisfiability of correspondent temporal concept (C intersection ((future 2) not 
C)) @{v5}. These examples show the benefits of descriptive means of ALCIO  (MT), 
as compare to known formalisms, e.g. [4].  

To discuss the application of OWL-MeT to meta-level ontology specific queries 
recall that an ontology O is a set of terminological and assertional axioms [25], and 
satisfiability checking of a knowledge base is equivalent to satisfiability checking of a 
concept G, equivalent to the conjunction of definitions of all concepts and individuals 
taken from O6. From the other side, meta-level queries have obvious relationship with 
the theory of modular ontologies [9]. Indeed, ontology versions in their usual form are 
ontology modules without concepts, defined externally. 

                                                           
6 Internalization procedure is applicable to logics allowing the definition of a universal role 

[25]; OWL-Lite and OWL-DL as the languages of ontology version definition possess role-
forming operators – union and reflexive transitive closure – necessary to construct a 
universal role. 

<owlmet:TClass rdf:ID="HappyFather"> 
<owlmet:equivalentClass> 
<owlmet:TClass> <owlmet:unionOf rdf:parseType="Collection"> 
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXthCentury"/> <owlmet:happens> 
<owlmet:TClass rdf:about="#HappyFatherInXXthCentury"/> 
</owlmet:happens> 
</owlmet:TRestriction> 
<owlmet:TRestriction> <owlmet:at rdf:resource="#XXIthCentury"/> 
<owlmet:happens><owlmet:TClass rdf:about="#HappyFatherInXXIthCentury "/> 
</owlmet:happens> 
</owlmet:TRestriction> 
</owlmet:unionOf></owlmet:TClass> 
</owlmet:equivalentClass></owlmet:TClass>
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Let Oi be an ontology, actual at the version i, and let Gi be a concept, equivalent 
to the conjunction of definitions of all concepts and individuals in Oi. Such Gi may be 
considered as the concept, defined internally [9] in an ontology version (or module) i. 
Then simple checking of the fact that Oi in the version i is satisfiable may be written 
as Gi @{i}.  

Checking satisfiability of a particular concept E taken from an ontology version i 
in another version, say j, may be executed in several steps. Initially, introduce a 
compiled concept GE,i – conjunction of all explicit and implicit definitions of concepts 
and individuals, used to define E in Oi . This can be done, e.g. with the help of 
compilation algorithm, defined in [9]. Then check satisfiability of concept (Gj 
intersection GE,i) @{j}.  

Analogously, given the whole ontology Oi, checking of the fact that in another 
version, j (where j≠ i), the ontology Oi is satisfiable may be written as (Gj intersection 
Gi ) @{j}. 

Retrieval queries serve for analysis of the structure of vocabulary, used to define 
an ontology version, and for analysis of structural changes between ontology versions. 
Some of the retrieval queries, such as temporal selection, may be formulated without 
usage of temporal logic. However, retrieval queries benefit from tight relationship 
with the underlying ontology language. A collection of interesting retrieval query 
templates, such as "NewChildren", "ObsoleteChildren" etc. in [14], or, ideally, proper 
ontology of ontology change operators, such as in [3] may serve as the source of 
various templates. More detailed analysis might require extension of ALCIO(MT) 
with role restrictions on temporal concepts.  

6 Conclusions and Future Work 

The paper proposes an enhancement of the formal apparatus for ontology 
evolution analysis, and introduces metric temporal description logic ALCIO (MT), 
which attempts to release the restrictions of known logical approaches. Reasoning 
support of OWL-MeT – the extension of Web Ontology language OWL with metric 
temporal operators proposed in ALCIO (MT) is now under development on the basis 
of open-source reasoner Pellet.  

Future work is seen in following directions: encoding of interesting change 
operations, such as "RestrictRange", "ExtendRange", "RestrictDomain", 
"ExtendDomain", "ModifyEquivalenceToSubclass" etc., taken e.g. from [3], and 
adopted to OWL DL, in OWL-MeT; development and implementation of 
optimization strategies of reasoning; and, finally, testing the reasoner services on real 
cases. 
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Abstract. The paper presents a novel ontology lifecycle scenario that
explicitly takes the dynamics and data-intensiveness of real world ap-
plications into account. Changing and growing knowledge is handled by
semi-automatic incorporation of ontology learning results into a collabo-
rative ontology development framework. This integration bases mainly
on automatic negotiation of agreed alignments, inconsistency resolution,
an ontology versioning system and support of natural language gene-
ration tools, which alleviate the end-user effort in the incorporation of
new knowledge. The architecture of the respective framework and notes
on its progressive implementation are presented.

1 Introduction and Motivation

Ontologies on the Semantic Web, especially in case of real world applications,
are very likely subject to change given the dynamic nature of domain know-
ledge. Knowledge changes and evolves over time as experience accumulates – it
is revised and augmented in the light of deeper understanding; new facts are
getting known while some of the old ones need to be revised and/or retracted at
the same time.

This holds especially for scientific domains – we have to incorporate newly
discovered facts and possibly change the inappropriate old ones in the respective
ontology as the scientific research evolves further. However, even virtually any
industrial domain is dynamic – changes typically occur in product portfolios,
personal structure or industrial processes, which can all be reflected by an onto-
logy in a knowledge management policy.

In these domains, ontology construction is usually the result of collaboration
(which involves cooperation among ontology engineers and domain experts)

⋆ This work has been supported by the EU IST 6th framework’s Network of Excellence
‘Knowledge Web’ (FP6-507482) and partially by Academy of Sciences of the
Czech Republic, ‘Information Society’ national research program, the grant AV
1ET100300419.
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through a manual process of the extraction of the knowledge. However, it is not
always feasible to process all the relevant data and extract the knowledge from
them manually, since we might not have a sufficiently large committee of ontology
engineers and/or dedicated experts at hand in order to process new data anytime
it occurs. This implies a need for (partial) automation of ontology extraction and
management processes in dynamic and data-intensive environments. This can be
achieved by ontology learning [15]. Therefore, a lifecycle of an ontology develop-
ment process apt for universal application in scientific and/or industrial domains
should also support appropriate mechanisms for dealing with the large amounts
of knowledge that are dynamic in nature.

While there has been a great deal of work on ontology learning for onto-
logy construction, e.g. [2], as well as on collaborative ontology development [18],
relatively little attention has been paid to the integration of both approaches
within an ontology lifecycle scenario. In this paper, we introduce our framework
for practical handling of dynamic and large data-sets in an ontology lifecycle,
focusing particularly on dynamic integration of learned knowledge into collabo-
ratively developed ontologies. One of the key elements supporting our integration
is the ability to reach an agreement on the semantics of the terms used in these
ontologies. Since the ontologies are created under different circumstances and
conditions and thus might represent different perspectives over similar know-
ledge, the achievement of an agreement will necessarily come through a (partially
automated) negotiation process.

The dynamic nature of knowledge is one of the most challenging problems
in the current Semantic Web research. Here we provide a solution for dealing
with dynamics in large scale, based on properly developed connection of onto-
logy learning and dynamic collaborative development. We do not concentrate on
formal specification of respective ontology integration operators, we focus rather
on implementation of them, following certain practical requirements:

1. the ability to process new knowledge (resources) automatically whenever it
appears and when it is inappropriate for humans to incorporate it;

2. the ability to automatically compare the new knowledge with a “master”
ontology that is manually and collaboratively designed and select the new
knowledge accordingly;

3. the ability to resolve inconsistencies between the new and current knowledge,
possibly favouring the assertions from presumably more complex and precise
master ontology against the learned ones;

4. the ability to automatically sort the new knowledge according to user-defined
preferences and present it to them in a very simple way, thus further allevi-
ating human efforts in the task of final incorporation of the knowledge.

On one hand, using the automatic methods, we are able to deal with large
amounts of changing data. On the other hand, the final incorporation of new
knowledge is to be decided by the human users, repairing possible errors and
inappropriate findings of the automatic techniques. The key to success and
applicability is to let machines do most of the tedious and time-consuming work
and provide people with concise and simple suggestions on ontology integration.
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The rest of the paper is organized as follows: Section 2 presents a brief
discussion of related work. Section 3 gives an overview of our ontology lifecycle
scenario and framework, whereas Section 4 presents the integration of manually
designed and learned ontologies in more detail. Finally, in Section 5 we give a
simple illustrative example of concrete usage of the our integration approach.
Section 6 concludes the paper and sums up our future work.

2 Related Work

Recent overviews of the state-of-the-art in ontologies and related methodologies
can be found in [9]. However, none of them offers a direct solution to the
previously mentioned problems. Methontology [8] is a methodology developed for
designing ontologies to serve as a base for extending it towards evolving onto-
logies. The ODESeW and WebODE suite [4] projects provide an infrastructure
and tools for semantic application development/management, which is also in
the process of being extended for networked and evolving ontologies. However,
they focus rather on the application development part of the problem than on
the ontology evolution parts.

The above projects have all focused on either a single part of ontology
evolution, or on a rather abstract study of the knowledge management cycle.
However, mechanisms that would provide a clue on how to incorporate the
dynamics into the lifecycle are typically put off only by introduction of the ver-
sion management, which we find insufficient. Moreover, the need for automatic
methods of ontology acquisition in data-intensive environments is acknowledged,
but the place of the automatic techniques is usually not distinguished in the
dynamic lifecycle settings. The work [10] describes a way of machine-assisted
refinement of automatically learnt ontologies. Our approach [17] offers a broader
picture of how to deal with the dynamics in a general lifecycle scenario. In this
paper we concentrate on the combination of ontology learning and manual (col-
laborative) development in dynamic settings.

3 DINO – A Dynamic Ontology Lifecycle Scenario

DINO is an abbreviation of three key elements of our ontology lifecycle scenario
and framework – Dynamics, INtegration and Ontology. However, the first two
can also be Data and INtensive. All these features express the primary aim of
our efforts – to make the knowledge efficiently and reasonably manageable in

data-intensive and dynamic domains.
Figure 1 below depicts the scheme of the proposed dynamic and application-

oriented ontology lifecycle that deals with the problems mentioned in the pre-
vious sections.

Our ontology lifecycle builds on four basic phases of an ontology lifecycle:
creation (comprises both manual and automatic ontology development and up-
date approaches), versioning, evaluation and negotiation (comprises ontology
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Fig. 1. Dynamics in the ontology lifecycle

alignment and merging as well as negotiation among different possible align-
ments). The four main phases are indicated by the boxes annotated by respec-
tive names. Ontologies or their instances in time are represented by circles, with
arrows expressing various kinds of information flow. The A boxes present actors
(institutions, companies, research teams etc.) involved in ontology development,
where A1 is zoomed-in in order to show the lifecycle’s components in detail.

The general dynamics of the lifecycle goes as follows. The community experts
(or dedicated ontology engineers) develop a (relatively precise and complex)
domain ontology (the Community part of the Creation component). They use
means for continuous ontology evaluation and versioning to maintain high quality
and manage changes during the development process. If the amount of data
suitable for knowledge extraction is too large to be managed by the commu-
nity, ontology learning takes its place. Its results are evaluated and partially
(we take only the results with quality above a certain threshold into account)
integrated into the more precise (but typically relatively small) reference com-
munity ontology. The integration is based on alignment and merging covered
by the negotiation component. Its proposal and implementation principles form
the key contribution of this paper (see Section 4 for details). The negotiation

component takes its place also when interchanging or sharing the knowledge
with other independent actors in the field. All the phases support ontologies in
the standard OWL format [1], (namely in its OWL DL flavour), although some
phases may not support the full range of the syntactic structures available (e.g.
natural language generation from triples, as introduced in Section 4.7 here and
in [16]). In the following we concentrate on the integration component. More
information on other parts of the lifecycle can be found in [17].
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4 Dynamic Integration of Newly Learned Knowledge in

the DINO Framework

The key novelty of the presented lifecycle scenario is its support for incorporation
of changing knowledge in data-intensive domains. This is achieved by implemen-
tation of a specific integration mechanism. Its scheme is depicted in Figure 21.
The particular components and their connections are described in the following
paragraphs.

Fig. 2. Dynamic integration scheme

The integration scheme details the usage of generic lifecycle’s components
– mainly the negotiation and versioning – in the process of incorporation of
learned ontologies into the collaboratively developed ones. However, the generic
components serve only as a base for specific wrappers. Each of the phases of
integration and their connections are described in the following sections.

4.1 Ontology Learning Wrapper

In this phase, machine learning and NLP methods are used for the processing of
relevant resources and extracting knowledge from them (ontology learning). The
ontology learning is realised using the Text2Onto framework [3]. We interface the
toolbox indirectly within the collaborative ontology development portal based
on MarcOnt Portal architecture (see Section 4.2). Configuration of the learning
algorithms is set using a special user interface in the portal. The settings is used
for batch processing of the new resources fed to the ontology learning component.

1 The full arrows symbolise data flow in the scheme. Long-dashed arrows indicate
production of a triple representation/dump of an ontology (the TD squares). The
short-dashed arrows represent user involvement either in ontology production or
extension preference sets’ definition.
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The results of one round of ontology learning – the OL circle in Figure 2 – are
optionally evaluated or refined using the Text2Onto confidence values and passed
to the alignment/negotiation wrapper (see Section 4.3).

4.2 Ontology Collaborative Development Portal

The whole integration as well as the DINO framework is based on the MarcOnt
Portal architecture [11] for collaborative ontology development. It is a part of a
broader initiative aimed mainly at utilisation of various digital library develop-
ment and maintenance efforts2.

MarcOnt Portal offers domain-independent means for efficient distributed
and collaborative ontology development. It supports features like ontology edi-
ting, ontology versioning (supported by the SemVersion system [21]), voting on
ontology changes and evaluation of these votes. The elements of DINO realising
various parts of the lifecycle are being implemented into the portal’s core, with
access provided by respective new parts of portal’s user and administrative
interfaces.

The ontology being developed using the portal’s collaborative interfaces is
the master reference ontology in the whole lifecycle. It is also the source for
the deployment of an official version of the ontology. The OM circle in Figure 2
represents its dump that serves as a reference to be integrated with the OL onto-
logy resulting from the learning process. The final suggestions (see Section 4.7)
form a base for a next version of the OM ontology submitted after the integration.

4.3 Ontology Alignment/Negotiation (A/N) Wrapper

Once the learned ontology OL and the master ontology OM have been crea-
ted, they need to be reconciled since they cover the same domain, but might
be structured differently. The reconciliation of these ontologies depends on the
ability to reach an agreement on the semantics of the terms used. The agreement
takes the form of an alignment between the ontologies, that is, a set of corres-
pondences (or mappings) between the concepts, individuals and properties in
the ontologies. However, the ontologies are developed in different contexts and
under different conditions and thus they might represent different perspectives
over similar knowledge, so the process by which to come to an agreement will
necessarily only come through a negotiation process. The negotiation process
is performed using argumentation-based negotiation that uses preferences over
the types of correspondences in order to choose the mappings that will be used
to finally merge the ontologies (see Section 4.4). The preferences depend on
the context and situation. A major feature of this context is the ontology,
and the structural features thereof, such as the depth of the subclass hierarchy
and branching factor, ratio of properties to concepts, etc. The analysis of the
components of the ontology is aligned with the approach to ontology evaluation,
demonstrated in [5], and can be formalized in terms of feature metrics. Thus

2 See http://www.marcont.org for details on the whole MarcOnt Initiative.

International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, June 7, 2007

18



the preferences can be determined on the characteristics of the ontology. For
example, we can select a preference for terminological mapping if the ontology
is lacking in structure, or prefer extensional mapping if the ontology is rich in
instances.

Thus, the alignment/negotiation wrapper interfaces two tools – one for the
ontology alignment discovery and one for negotiation of agreed alignment. We
call these tools AKit and NKit, respectively, within this section. For the former,
we use the ontology alignment API [6] developed by INRIA Rhone-Alpes3. For
the negotiation we use the framework described in [13]. Both tools are used
by the wrapper in order to produce OA – an ontology consisting of axioms4

merging classes, individuals and properties in the OL and OM ontologies. It is
used in consequent factual merging and refinement in the ontology reasoning
and management wrapper (see Section 4.4 for details).

The wrapper itself works according to the meta-code in Algorithm 1. The

Algorithm 1 Meta-algorithm of the alignment and negotiation
Require: OL, OM — ontologies in OWL format
Require: AKit, NKit — ontology alignment and alignment negotiation tools, respectively
Require: ALMSET — a set of the alignment methods to be used
Require: PREFSET — a set of alignment formal preferences corresponding to the OL, OM onto-

logies (to be used in N-kit)
1: SA ← ∅
2: for method ∈ ALMSET do

3: SA ← SA ∪ AKit.getAlignment(OL , OM , method)
4: end for

5: Aagreed ← NKit.negotiateAlignment(SA , PREFSET )
6: OA ← AKit.produceBridgeAxioms(Aagreed)
7: return OA

ontology alignment API offers several possibilities of actual alignment methods,
which range from trivial lexical equality detection through more sophisticated
string and edit-distance based algorithms to an iterative structural alignment
by the OLA algorithm [7]. The ontology alignment API has recently been ex-
tended by a method for the calculation of a similarity metric between ontology
entities, an adaptation of the SRMetric used in [20]. We also consider a set of
justifications, that explain why the mappings have been generated. This infor-
mation forms the basis for the negotiation framework that dynamically generates
arguments, supplies the reasons for the mapping choices and negotiate an agreed
alignment for both ontologies OL and OM .

4.4 Ontology Reasoning/Management (R/M) Wrapper

This wrapper is used for merging of the OL and OM ontologies. It uses Jena 2
Ontology API5. It merges the OL and OM ontologies according to the statements

3 See http://alignapi.gforge.inria.fr/ for up-to-date information on the API.
4 Using constructs like owl:equivalentClass, owl:sameAs, owl:equivalentProperty,

rdfs:subClassOf or rdfs:subPropertyOf.
5 See http://jena.sourceforge.net/ontology/index.html.
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in OA, preferring the lexical labels from the master OM ontology when two labels
are said to be equivalent. Moreover, the wrapper checks for (some) possible
inconsistencies caused by the merging (using Jena’s simple OWL DL reasoner)
and attempts to resolve them favouring the assertions in the OM ontology, which
are supposed to be more relevant, again. The resulting ontology OI is passed
to the ontology diff wrapper. As the Jena ontology model is internally based
on a graph/triple (RDF) structure, it allows to easily export or transform an
ontology in a triple format needed for the consequent wrapper (see Section 4.5
for details).

Algorithm 2 describes the meta-code of the process arranged by the ontology
merging and reasoning wrapper. The inconsistency resolution is somewhat tricky.

Algorithm 2 Meta-algorithm of the merging and inconsistency resolution
Require: OL, OM , OA — ontologies in OWL format
Require: getEq() — function selecting all assertions of type owl:equivalentClass, owl:sameAs,

owl:equivalentProperty
Require: getRM() — function returning wrapper combining a generic ontology manager and

(incomplete OWL Full) reasoner bound to the given ontology
1: Otmp ← copy(OL)
2: OI ← copy(OM )
3: RM ← getRM(OM )
4: Rtmp ← getRM(Otmp)
5: RL ← getRM(OL)
6: RA ← getRM(OA)
7: RI ← getRM(OI )
8: equivalencies ← {owl : equivalentClass, owl : sameAs, owl : equivalentProperty}
9: UNIFIED ← ∅
10: for id ∈ getEq(OA) do

11: Rtmp.replaceLabels(id.OL, id.OM )
12: UNIFIED ← UNIFIED ∪ id.OM

13: end for

14: Rref ← copy(Rtmp)
15: for eq ∈ Rtmp.getAxiomsWithLabels(UNIFIED) do

16: Rtmp.retractAxioms(eq)
17: RI .addAxioms(eq)
18: end for

19: RA.removeAxiomsOfType(equivalencies)
20: RI .addAxioms(Rtmp.getAllAxioms())
21: RI .addAxioms(RA.getAllAxioms())
22: RI .resolveInconsistencies(Rref )
23: RI .augmentStructure()
24: return OI

However, we can apply a sort of “greedy” heuristic, considering the assertions
in the master OM ontology to be more valid. Therefore we query the Rref

structure (with the axioms of learned ontology, possibly with replaced labels) in
the resolution process. We currently handle the following inconsistencies:

– sub-class hierarchy cycles: these are resolved by cutting the cycle by re-
moving an owl:subClassOf statement present in Rref ;

– disjointness-subsumption conflicts: if classes are said to be disjoint and a
sub-class relationship holds between them or if they have common sub-classes
at the same time, the conflicting assertion indicated by Rref is removed;
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– disjointness-instantiation conflicts: if an individual is said to be an in-
stance of classes that are disjoint, the assertion indicated by Rref is removed.

When there are several removal candidate axioms involved in one inconsisten-
cy, we sort them according to the confidence provided by the Text2Onto lear-
ning algorithms [3], which is stored in the Rref reference structure. Similarly
to [10], we start removing the axioms with least overall confidence, until we
do not resolve the inconsistency (thus keeping the more “relevant” discoveries
intact). We keep the conflicting assertions when they all originate from the OM

master ontology and let the users to cope with this fact. Note that the sources of
inconsistencies are provided by simple natural language description and recorded
for further examinations by human users – they can eventually decide to favour
the learned assertions if appropriate for the given task in the given context.

The function augmentStructure() attempts to complete the structure of
learned axioms using the more precise and complex knowledge in the OM master
ontology. Currently, augmentation of owl:subClassOf and instantiation relations
using rdfs:domain and rdfs:range assertions in property definitions from OM

ontology is taken into account (see Section 5 for an example). More sophisticated
extensions are possible in the future.

If we want to include even the “equal” labels from the learned ontology,
we can omit the renaming and subtractions in lines 10-16 and 19 and include
the respective equality statements from OA into OI , together with respective
axioms from OL. The decision depends on users – whether they want to prefer
the labels from master ontology or not (e.g. when looking for possible unknown
synonyms of important terms from OM in domain resources; this could be useful
for example in the medicine domain in task of identification of different names
for the same drugs and/or proteins).

4.5 Ontology Diff Wrapper

Possible extension of a master ontology OM by elements contained in the merged
and refined ontology OI naturally corresponds to the differences between them.
These are discovered by means of the SemVersion library [21], which is interfaced
within this wrapper. In particular, the possible extensions are equal to the
additions OI brings into OM . We compute the additions from the triple-based
representation6 of OI and OM ontologies. The additions are passed to the triple
sorter then (see Section 4.6 for details).

4.6 Triple Sorter

The addition triples passed to this component form a base to the eventual ex-
tension suggestions for the domain experts. However, the number of additions

6 Since SemVersion does not currently support full OWL diff computations. The triple
representation is provided by the ontology R/M wrapper, as indicated by the TD
(triple dump) squares in Figure 2.
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can generally be quite large, so an ordering that takes a relevance measure of
possible suggestions into account is needed. Thus we can for example eliminate
suggestions with low relevance level when presenting the final set to the users
(without overwhelming them with a large number of possibly irrelevant sugges-
tions).

As a possible solution to this task, we have proposed and implemented a
method based on string subsumption and Levenshtein distance [14]. These two
measures are used within relevance computation by comparing the predicate,
subject and object lexical labels of a triple to two sets (Sp, Sn) of words, provided
by users. The Sp and Sn sets contain preferred and unwanted words, respectively,
concerning the lexical level of optimal extensions.

Relevance score of a triple T with respect to the wanted/unwanted sets of
words Sp/Sn (relScore(T, Sp, Sn) below) is given by the formula:

relScore(T, Sp, Sn) = rel(T, Sp) − rel(T, Sn),

where rel(T, S) is a function measuring the relevance of the triple T with respect
to the words in the set S. The higher the value, the more relevant the triple is.
The function7 naturally measures the “closeness” of the T triple’s predicate,
subject and object labels to the set of terms in Sw (Sw stands for Sp or Sn).
The value of 1 is achieved when the label is a direct substring of or equal to
any word in Sw or vice versa. When the Levenshtein distance between the label
and a word in Sw is lower than or equal to the defined threshold t, the relevance
decreases from 1 by a value proportional to the fraction of the distance and t.
If this is not the case (i.e. the label’s distance is greater than t for each word
in SW ), a similar principle is applied for words of the possibly multi-word label
and the relevance is further proportionally decreased (the minimal possible value
being 0).

4.7 Mapping Triples to Natural Language Suggestions

The DINO framework is supposed to be used primarily by users who are not
experts in ontology engineering. Although the MarcOnt Portal [11] already offers
a simple ontology editing interface, we would like to further help the user in
ontology augmentation by the learned knowledge. Therefore the suggestions are
produced in the form of very simple natural language statements. These are
obtained directly from the sorted triples passed to this component, using a minor
modification of the generation process in CLIE described in [19]. Examples of
this final form of suggestions can be found in the next section. The suggestions
are still bound to the underlying triples, therefore the user can very easily add
the respective OWL axioms into the new version of the OM master ontology
without actually dealing with the intricate OWL syntax itself.

7 We described the relevance function in more detail in [17, 16], together with
complexity analysis (which is in feasible class of O(m log(m)) with respect to the
number of triples).
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5 Evaluation and Usage Example

The DINO framework is still a work in progress, and thus no proper evaluation
has been carried out yet. However, preliminary evaluation of the core negotiation
and preference-based suggestion sorting techniques has been made. The imple-
mented sorting algorithm placed 80.7% of triples from a test sample into an
order intuitively prepared by a human user. Details on the sorting evaluation
are in [17, 16]. The negotiation component has been evaluated using the Ontology
Alignment Evaluation Initiative test suite8. Experiments on the impact of the
argumentation approach over a set of mappings and a comparison wrt. current
alignment tools is presented in [12]. The preliminary results of these experiments
are promising and suggest that the argumentation approach can be beneficial
and an effective solution to the problem of dynamically aligning heterogeneous
ontologies.

In the following we provide a simple illustrative example of concrete usage
of the DINO integration mechanism. Imagine a medical institution that has de-
veloped an ontology OM covering the basic concepts in clinical practice and
research, possibly with help of ontology engineering experts when deploying
the DINO framework. The ontology may need to be extended by new infor-
mation in research (e.g. when new treatments or diagnosis methods are develo-
ped and published). Related information can be found in respective documents
(research papers, industry white-papers, etc.). Figure 3 presents a sample text
fragment with the respective learned OWL OL ontology (we omit the namespace
for simplicity).

. . . while cerebellar astrocytoma

is usually discovered by means of

CT. . . using a diagnostic procedure

of scanning. . .GVHD, an immune

dysfunction. . .GVHD, a disease being a type

of dysfunction. . .

...

<owl:ObjectProperty rdf:ID="discovered-by"/>

<owl:Thing rdf:ID="CT"/>

<owl:Thing rdf:ID="cerebellar-astrocytoma">

<discovered-by rdf:resource="#CT"/>

</owl:Thing>

<owl:Class rdf:ID="diagnostic-procedure"/>

<owl:Class rdf:ID="immune-dysfunction"/>

<owl:Class rdf:ID="dysfunction"/>

<owl:Class rdf:ID="scanning">

<rdfs:subClassOf rdf:resource="#diagnostic-procedure"/>

</owl:Class>

<immune-dysfunction rdf:ID="GVHD"/>

<owl:Class rdf:ID="disease">

<rdfs:subClassOf rdf:resource="#dysfunction"/>

</owl:Class>

...

Fig. 3. A text sample and the learned ontology

The ontologies OL and OM are aligned and negotiated (see Figure 4). The
preferences have been chosen on the basis of the ontological information of
OL and OM (see Section 4.3 for details). The OM ontology and the ontology
OA, consisting of axioms produced from the negotiated mappings are shown in
Figure 5. When trying to merge the OM and OL ontologies into OI according

8 See http://oaei.ontologymatching.org/.
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Fig. 4. Negotiated mappings

...

<owl:ObjectProperty rdf:ID="InstrumentalProperty"/>

<owl:ObjectProperty rdf:ID="DiscoveredUsing">

<rdfs:subPropertyOf rdf:resource="#InstrumentalProperty"/>

<rdfs:range rdf:resource="#Manifestation"/>

<rdfs:domain rdf:resource="#DiagnosisProcedure"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Manifestation"/>

<owl:Class rdf:ID="Procedure"/>

<owl:Class rdf:ID="DiagnosisProcedure">

<rdfs:subClassOf rdf:resource="#Procedure"/>

</owl:Class>

<owl:Class rdf:ID="SoftTissueCytoma"/>

<owl:Class rdf:ID="AstroCytoma">

<rdfs:subClassOf rdf:resource="#SoftTissueCytoma"/>

</owl:Class>

<owl:Class rdf:ID="Disease">

<owl:Class rdf:ID="Dysfunction">

<rdfs:subClassOf rdf:resource="#Disease"/>

</owl:Class>

...

...

<owl:ObjectProperty rdf:ID="DiscoveredUsing">

<owl:equivalentProperty rdf:resource="#discovered-by"/>

</owl:ObjectProperty>

<AstroCytoma rdf:ID="cerebellar-astrocytoma"/>

<owl:Class rdf:ID="DiagnosisProcedure">

<owl:equivalentClass rdf:resource="#diagnostic-procedure"/>

</owl:Class>

<owl:Class rdf:ID="immune-dysfunction">

<owl:subClassOf rdf:resource="#Dysfunction"/>

</owl:Class>

<owl:Class rdf:ID="Dysfunction">

<owl:equivalentClass rdf:resource="#dysfunction"/>

</owl:Class>

...

Fig. 5. A master ontology sample and the respective mapping

to the technique described in Section 4.4, we find out that there is one inconsis-
tency – “disease” is said to be a subclass of “dysfunction” and vice versa, which
creates a cycle in the taxonomy. Therefore we remove the respective “invalid”
assertion that originated from the OL ontology. On the other hand, we can extend
the learned knowledge based on range and domain of the “DiscoveredUsing”
property. We can infer new assertions on the instantiation of “cerebellar astro-

cytoma” (instance of “Manifestation”) and “CT” (instance of “DiagnosisProce-

dure”).

Now we can produce the triples (with OL equivalent labels replaced by those
from OM ) from the OI merge, together with respective suggestions based on
the differences between OI and OM . We present the sorted triples and their
transformations into natural language statements9 in Table 1.

Note that the above example may be also used if we just need to align and
possibly extend the ontology with another institution’s knowledge base – the
only difference is that we do not perform the ontology learning and also omit
retractions in the integration process, as noted in Section 4.4. This can be applied
in the critical task of inter-mediation of medicine information, for example.

9 They are preceded by sample relevance values, corresponding to {Scanning,
discover, cytoma} and {subclass, disease, dysfunction} sets of preferred and
unwanted labels, respectively.
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<AstroCytoma rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of ASTROCYTOMA.

<Manifestation rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of MANIFESTATION.

<DiagnosisProcedure rdf:ID="CT"/> +0.389: CT is a new instance of DIAGNOSIS PROCEDURE.

<immune-dysfunction rdf:ID="GVHD"/> +0.333: GVHD is a new instance of IMMUNE DYSFUNCTION.

<owl:Class rdf:ID="scanning">

<rdfs:subClassOf rdf:resource="#DiagnosisProcedure"/> -0.444: A new class SCANNING is a sub-class of DIAGNOSIS PROCEDURE.

</owl:Class>

<owl:Thing rdf:ID="cerebellar-astrocytoma">

<DiscoveredUsing rdf:resource="#CT"/> -0.667: CEREBELLAR ASTROCYTOMA is DISCOVERED USING CT.

</owl:Thing>

<owl:Class rdf:ID="immune-dysfunction">

<rdfs:subClassOf rdf:resource="#Dysfunction"/> -0.833: A new class IMMUNE DYSFUNCTION is a sub-class of DYSFUNCTION.

</owl:Class>

Table 1. Extension triples and the respective NL suggestions

6 Conclusions and Future Work

We have presented the basic principles of DINO – a novel framework for dyna-
mic ontology development in data-intensive domains. As a core contribution of
the paper, we have described the mechanism of integration of learned and colla-
boratively developed knowledge. It covers all the requirements specified in Sec-
tion 1. The proposed combination of automatic and collaborative tools in know-
ledge acquisition, integration and inconsistency resolution ensures production of
reliable, broad and precise ontologies when using DINO in dynamic settings.

Our present and future work concentrates mainly on full implementation
of the DINO framework by the respective extensions of the MarcOnt Portal
architecture. We also plan to continuously evaluate the framework in line with
demands of medicine industry (which we are currently specifying with help of
e-Health experts) and possibly other domains.
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DERI, Galway, 2005.

12. L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat, and T. Bench-Capon.
Argumentation over ontology correspondences in mas. In In Proceedings of the
Sixth International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2007), Honolulu, Hawaii, USA. To Appear, 2007.

13. L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon, and T. R. Payne. Reaching
agreement over ontology alignments. In Proceedings of 5th International Semantic
Web Conference (ISWC 2006). Springer-Verlag, 2006.

14. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Cybernetics Control Theory, 10:707–710, 1966.

15. A. Maedche and S. Staab. Ontology learning. Handbook on Ontologies, 2004.
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Abstract. In order to meet the demands of the Semantic Web, today’s
ontologies need to be dynamic, networked structures. One important
challenge, therefore, is to develop an integrated approach to the evolu-
tion process of ontologies and related metadata. Within this context, the
specific goal of this work is to capture the evolution of metadata due
to changed concepts, relations or metadata in one of the ontologies, and
to capture changes to the ontology caused by changes to the metadata.
After a short discussion of the nature of metadata, we propose a method-
ology to capture (1) the evolution of metadata induced by changes to the
ontologies, and (2) the evolution of the ontology induced by changes to
the underlying metadata. This will lead to the implementation of an
approach for evolution of metadata related to ontologies.

1 Introduction

Support for metadata evolution becomes extremely important in a distributed,
dynamic environment. Change management should warrant the continuity of
data access, i.e. all data previously associated with an older version of an on-
tology should be accessible and interpretable through the new version. When
ontologies evolve, these changes should be propagated to all the information ob-
jects that are dependent on them, such as local copies of ontologies and annotated
texts, although this may not always be possible in practice, particularly where
networked ontologies are concerned. After the detection of changes in conceptual
structure between two versions of an ontology, the ontology management system
must enable the update of metadata affected by the changes in the ontology, in
order to maintain a consistent link between ontology and metadata. This link
is defined by a number of attributes, amongst which are the URLs for ontology,
annotated text and concept. On the other hand, the system must also be capable
of enabling updates to the ontology which may be necessary when the metadata
changes: for example, the processing of new documents might show the emer-
gence of new concepts and new relations, reflecting an evolution of the domain
itself, or some concepts may become less significant. Similarly, the mismatch
between the results of two different annotators in a collaborative annotation
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environment might require the merging of two subconcepts in an ontology. In
these scenarios, the evolution of ontologies should be guided by changes in the
metadata, to keep the knowledge they contain up-to-date with respect to the
considered domain.

With respect to ontology evolution, we therefore distinguish two types of
changes: top-down and bottom-up [12]. Top-down changes are explicit changes
in the ontology, to which the metadata needs to be adapted. These will be
discussed in Section 3. Bottom-up changes occur when distributed metadata
need to be reflected by changes to an ontology, and will be discussed in Section
4. First, however, in Section 2 we take a brief look at semantic metadata, in order
to fully understand the role of its creation, existence and need for maintenance.

Finally, we would like to clarify some terminological ambiguity when talking
about metadata. This is due to the use of the term in various areas of knowl-
edge engineering. First, there is the notion of metadata as ontology metadata.
Ontology metadata provides information about the ontology, e.g. who created
it, how many concepts it contains, etc. A proposal exists for a standard descrip-
tion for this type of metadata information, the Ontology Metadata Vocabulary
(OMV) [5]. Changes in the ontology may affect the value of these standardised
attributes: for instance, the addition of another natural language for the labels
will lead to a change in the OMV language attribute. The second notion of
metadata stems from the area of natural language processing, and is often called
semantic metadata or annotations. This type of metadata concerns concept in-
stantiation in the form of the annotation of textual (or other forms of) data,
and therefore contains information about the linguistic content of the ontology.
Note that within this work, we are concerned primarily with text rather than
other forms of media such as images or videos, so where the question of media
is left unspecified, we shall be referring to textual forms of media. In this sense
of metadata, data annotation concerns the task of adding semantic metadata to
text. In this context it concerns the linking of instances in the text to concepts in
the ontology, and potentially also finding relations between such concepts. This
is known as semantic metadata creation. It is applied to ontology evolution in
the form of bottom-up change discovery and ontology population, which con-
cerns adding instances from the text to concepts in the ontology. In this paper,
we will be discussing the dynamics of semantic textual metadata: hereafter when
we refer to metadata, unless otherwise stated, we mean semantic metadata.

2 Creation of semantic metadata

The Semantic Web aims to add a machine tractable, repurposable layer to com-
plement the existing web of natural language hypertext. In order to realise this
vision, the creation of semantic annotation, the linking of web pages to ontolo-
gies, and the creation, evolution and interrelation of ontologies must become
automatic or semi-automatic processes. An important aspect of the Semantic
Web revolution is that it is based largely on human language materials, and in
making the shift to the next generation knowledge-based web, human language
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will remain crucial. In the context of new work on distributed computation, Se-
mantic Web Services go beyond current services by adding ontologies and formal
knowledge to support description, discovery, negotiation, mediation and compo-
sition. This formal knowledge is often strongly related to informal materials. To
make these types of services cost-effective, we need automatic knowledge har-
vesting from all forms of content that contain natural language text or spoken
data.

Semantic annotation is essentially the task of assigning to the entities in the
text links to their semantic descriptions. This kind of metadata provides both
class and instance information about the entities. Semantic annotations enable
many new applications to be performed, such as highlighting, indexing and re-
trieval, categorisation, generation of more advanced metadata, and a smooth
traversal between unstructured text and available relevant knowledge. Semantic
annotation can be applied to any kind of text - web pages, regular (non-web-
based) documents, text fields in databases, etc. - or even to non-textual forms of
data (although, as mentioned earlier, we shall restrict ourselves here to textual
content). Furthermore, knowledge acquisition can be performed on the basis of
the extraction of more complex dependencies, such as analysis of the relation-
ships between entities, event and situation descriptions, and so on.

Automatic semantic annotation of textual data is generally carried out by
means of some kind of ontology-based information extraction (OBIE). While
semantic annotation can of course be performed manually, it is a time-consuming
and laborious task, which certainly cannot scale to the demands of real world
applications on the web. Therefore at the least, a semi-automatic, if not fully
automatic, process is required. Ontology-based IE differs from traditional IE
in a number of ways. First, it makes uses of a formal ontology rather than a
flat lexicon or gazetteer, which may also require reasoning to be carried out.
Second, it not only finds the (most specific) type of the extracted entity, but it
also identifies it, by linking it to its semantic description in the instance base.
This allows entities to be traced across documents and their descriptions to be
enriched through the IE process. This more semantic form of IE is therefore a
much harder task than the traditional one: see for example [7], which describes
the extension of a traditional IE system into one which performs a more semantic
extraction, comparing the two tasks, systems and results.

The automatic population of ontologies with instances from the text requires
the existence of an ontology and a corpus. From this, an OBIE application
identifies instances in the text belonging to concepts in the ontology, and adds
these instances to the ontology in the correct location. It is important to note
that instances may appear in more than one location in the ontology, because of
the multidimensional nature of many ontologies and/or ambiguities which cannot
or should not be resolved at this level. For examples of OBIE applications, see
for example [9, 2].
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3 Top-Down metadata evolution

As metadata creation is an expensive task, it is important that sets of ontology
metadata and document annotations are kept in sync with an evolving ontol-
ogy. As far as possible, we do not want to have to reannotate a whole corpus
every time the ontology changes in some way (although in some cases this is in-
evitable). The evolution of the related metadata has to be synchronised with the
evolution of the ontologies for the purpose of preserving instance data and com-
patibility between ontology versions . Therefore, methods for evolving metadata
automatically and in parallel with the networked ontologies are required. In the
presence of networked ontologies, this includes the synchronisation of distributed
metadata.

Consequently, changes in ontology structure need to be captured by means of
evolution operations, and described in some standardised fashion. One solution
to this problem is to keep the metadata static and keep track of the (specific)
version of the ontology used for the text annotation. In this case, we assume
that annotations are stable but contextual, and thereby manage the evolution
of the ontology only at the ontological level by means of links between the old
and new versions of the ontology, or the link between different ontologies. In
this case we could study how the annotations according to one ontology can be
imported into a new ontology (linked to the other ontology in a formal way).
However, this approach leads to a high level of complexity if there are many
versions of the ontology and also makes automatic processing more difficult (for
example, using the populated ontology for tasks such as information retrieval and
question answering). Furthermore, it is not evident how this could be achieved
when material is added to or deleted from the ontology, as links cannot exist
to items which are non-existent. So it would only be useful for certain types of
change and not as a complete framework for change (assuming that we wish to
avoid data loss).

3.1 Related Work

The main candidate for the change capture and description phases is [6], who
propose a framework for ontology evolution that integrates all sources of ontology
change information. A so-called transformation set encompasses all changes that
have occurred between an old and a new version of the ontology. The changes
that can occur in OWL ontologies have been gathered into a change typology
and made available on the web. The change typology is an ontology of change
operations, and covers basic change operations such as delete superclass,
and complex operations, e.g. add an entire subtree. The ontology of basic
change operations contains add and delete operations for each feature of the
OWL knowledge model. Complex operations consist of a combination of basic
operations. We have evaluated this ontology in the light of the requirements for
capturing the dynamics of metadata.

The main element missing from Klein and Noy’s typology is the networked
nature of ontologies. For example, the addition of a new ontology to the network
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would require the addition of new instances and possibly other changes such as
relational information linking instances to different parts of the network. We do
not deal here specifically with network-related changes, preferring to focus in the
first instance on the changes that stem from one ontology; networked ontology
evolution will be part of future work.

The other difference between Klein and Noy’s typology and our proposed
framework is that they basically developed the change ontology for their own
metamodel of OWL, which was built with different assumptions and design
considerations that are partially incompatible with ours, since our work is within
the scope of the NeOn project3, which relies on a particular metamodel for OWL.
For example, the references to slots are more concerned with a frame-based model
and are not really appropriate here, although many of them can be translated
into changes that affect instances.

Finally, we also aim to provide a different kind of categorisation of the
changes: for example, distinguishing between changes that stem from or affect
the network, ontology, concept or instance, because these may have different
causes and different effects. We also need to characterise the actions associated
with the changes, rather than just specifying the information loss: for example,
addition of a new concept in the ontology may require additional annotation in
order to find the relevant metadata (instances); deletion of a concept may involve
an automatic deletion of its relevant instances; merging two concepts requires
merging of their instances, and so on.

For this purpose we need to establish:

1. which change classes are relevant for metadata evolution;
2. what effect such changes have on the metadata
3. what action should follow these changes.

For instance, if a concept is moved, references to the concept should be found
and modified appropriately; if a concept is deleted, annotations referencing the
concept should be changed to reference its superclass, etc.

3.2 A framework for capturing metadata evolution

We classify the changes according to those which stem principally from the
concept, instance or property level. First we look at the effect on the instances
caused by changes to the ontology / concepts. We describe the change and the
effect on the data (largely as established by Klein and Noy, though with some
differences related to the frame-based vs OWL implementation), and propose the
actions that should be taken. Note that our aim here is to attempt to specify
the changes and actions that should take place – some of these will most likely
occur as a matter of course (such as merging associated instances when their
respective classes are merged).

3 http://www.neon-project.org
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It must be borne in mind that the change typology represents an initial
framework for capturing changes in ontologies. Its envisaged role is to serve as
the basis for further discussion and a more formal specification.

Most changes originating at the property level do not really affect the meta-
data as such: for example, changing a property means that a new property name
will be attached to the instance, but does not affect the instance per se. How-
ever, if a new property is added, reannotation may be necessary to acquire new
instances. On the other hand, if a property is deleted, the instance should auto-
matically inherit the property of its superclass.

Changes occurring at the concept level are the ones most likely to influence
the metadata: in some cases, the instances may have to be moved to new classes;
in other cases, reannotation may be required in order to acquire new instances
(e.g. when new classes are added to the ontology).

Thus we see that for each change, a set of 3 possible actions exists:

1. do nothing;
2. some manual action is required;
3. some automatic action is required.

Do Nothing: The first action is self-explanatory and requires no further dis-
cussion. In some cases, a degree of data loss is inevitable.

Manual Action: The second action almost always requires some kind of re-
annotation of the corpus. This can be for several reasons:

First, existing information in the ontology needs to be reclassified. This could
be the case where a new subclass is added. Imagine we have an ontology which
contains the class comestible and the subclass food. Now imagine we add a new
subclass of comestible, drink. Before this subclass was added, all instances of
drink that were not also instances of food would have been classified simply
as comestible, because that was the most specific class to which they could
belong in the ontology. Once drink is added to the ontology, such instances
need reclassifying under the drink class. However, this is almost impossible to do
automatically because we have no way of knowing which instances of comestible
should be moved and which should not, unless we return to the text for further
analysis, or unless the ontology provides us with further information.

Second, information may be missing from the ontology. This could be the
case when a new top class is added to the ontology.

Finally, it may also be a combination of the two factors. For example, in the
case where a new superclass is added to the ontology, some information may be
missing and some may need reclassification.

While missing instances can simply be added to the appropriate place in the
ontology when found in the text, reclassification is a little more tricky because
it consists of a two-stage process: first the system must find the instances in the
text and recognise that they are currently not classified in the most appropriate
way in the ontology, and second, it must follow the automatic procedure for
reclassification as specified below.

International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, June 7, 2007

32



Automatic Action: The third action requires a set of procedures to be followed
for automating the reclassification of instances in the ontology. Below we give an
example of some such possible procedures according to the GATE ontology API:
naturally the exact procedures will be implementation-specific according to the
ontology model used. Note that some of the actions could be defined simply as
natural consequences rather than explicit actions.

– When a class is added
• It will automatically inherit from its superclasses a set of properties

– When an equivalent class is added
• It will inherit all the instances from its equivalent class
• These instances will all have a sameIndividualAs statement added

– When an instance is added
• It will automatically inherit from its superclasses a set of properties.

– When a class is deleted
• A list of all its superclasses is obtained. For each class in this list, a list

of its subclasses is obtained and the deleted class is removed from it.
• All subclasses of the deleted class are moved to subclasses of the parent

of the deleted superclass. A list of all its disjoint classes is obtained. For
each subclass in this list, a list of its disjoint classes is obtained and the
deleted class is removed from it.

• All instances of the deleted class are moved to its direct superclass in
the ontology.

4 Bottom-Up ontology evolution

Textual resources and the associated metadata generally evolve faster than the
related ontologies. In that sense, they reflect more accurately the evolution of
the domain itself, e.g. progresses realised in scientific fields, new trends or obso-
lete elements. Even if ontologies are supposed to be a stable conceptualisation
of the domain, the evolution of the metadata has to be reflected in the related
ontologies, to keep the relation between ontologies and metadata up-to-date, and
so that the ontologies evolve in accordance with the current state of the domain
they represent. Therefore, the dynamics of metadata have to be captured in
a way that it can be related to the adequate ontologies and guide their evolu-
tion by suggesting corresponding ontology changes, leading to a metadata-driven
maintenance of ontologies. We shall therefore investigate which operations are
necessary to cover a number of evolution strategies for bottom-up change dis-
covery, e.g. in the case of a required extension or refinement of the ontological
structure of a particular ontology component, or the suggestion of the merge
of two classes for a particular application if an automatic classifier is unable to
distinguish between the two (or if human agreement is not reached) and the
concepts in question are considered relatively similar.

In this section, we consider the notion of metadata according to a general
definition: information about the content of a resource or a document. Resources
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and documents can take different forms, (texts, images, etc.), and the associated
metadata can be either manual annotations (e.g. folksonomy tags given by the
author of an image) or automatically extracted (e.g. using tools for information
extraction from texts). In the case of semantic annotations, metadata is repre-
sented according to ontology elements. The goal of this section is to show how
ontologies can evolve in accordance with the evolution of metadata associated
with documents of the domain. The basis of the proposed mechanism consists
of relating evolving (non-semantic) metadata with the considered ontologies, in
order to assess the insufficiencies of these ontologies in representing the consid-
ered metadata as semantic annotations. The process of suggesting changes in
an ontology based on changes in the underlying annotated dataset was defined
as data-driven change in [8]. It can be argued that the methodology described
here is data-driven rather than metadata-driven, in the sense that, in most of
the cases, metadata evolves as a consequence of the evolution of the underlying
data. However, in the case of manual annotation, for example, the annotator
may change the metadata associated with a document, without changing the
document itself.

The proposed methodology can be considered as a bottom-up approach for
two reasons. First, the basic principle is that changes in metadata would guide
the evolution of the ontologies. Second, the definition of the methodology itself
is based on experimentations using real life datasets: by studying the evolution
of these datasets through the associated metadata, we aim at defining general
principles for a metadata-driven ontology evolution. Therefore, we plan to ap-
ply this methodology to two concrete case studies using two different datasets
and two different forms of metadata: the evolution of ontologies depending on
changes in folksonomies and depending on changes in textual documents in a
given domain. We first give a brief outline of the methodology we plan to follow,
followed by descriptions of two case studies.

4.1 Methodology

This section presents our approach for studying changes in metadata and deriv-
ing suggestions of changes in the corresponding ontologies. More precisely, we
describe a method to capture (1) the evolution of different types of metadata
and (2) the implied changes in the related (networked) ontologies. The proposed
methodology relies on a bottom-up approach for capturing the relations between
metadata evolution and ontology changes. First, the data contained in a set of
existing documents/resources has to be automatically related to the considered
ontologies, in order to form an exploitable corpus of ontology-based metadata.
Metadata changes can then be captured on the basis of the generated structure,
and the study of the implications of these changes on ontologies can be carried
out, with the aim of deriving suggestions of corresponding ontology evolutions.
We therefore aim to establish what effect the evolution of metadata has on the
ontologies, in terms of ontology changes. For instance, if a new prominent term
appears from a set of textual resources, a concept should be added in the on-
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tology; if two terms appear to be related in the metadata (e.g. through frequent
co-occurrence) then the ontology should be extended with a new relation.

Obtaining this exploitable corpus of metadata, linking the resources to the
ontologies, leads to several common, generic or domain-specific issues:

Pre-processing: First, the considered documents, resources and metadata
can take different forms, and may contain noise, redundancies, etc. A preprocess-
ing step is generally required in order to obtain an exploitable corpus, including
domain (or data)-dependent tasks such as filtering, transformation, etc.

Conceptual Organisation: Once a set of descriptive terms is obtained for
each of the considered documents, we need to identify from among these terms
those that represent important domain concepts, which may be contained in
the ontologies. More importantly, potential relations between these terms, or
more precisely between the corresponding concepts, have to be detected. One
possibility is to group (or cluster) the terms according to their relations in the
documents, suggesting in this way potential relations in the ontologies.

Ontology Matching: Finally, the links between the obtained conceptual
structure and the considered ontologies have to be established. This can be re-
alised by using generic ontology matching techniques [1], mapping the organised
terms to ontology concepts, and relating them according to ontology relations.
It is worth noting that these mappings already provide indications of missing
knowledge in the ontologies: the terms and relations for which there is no map-
ping suggest missing concepts and relations.

These three tasks provide the basic structure which we rely on for capturing
metadata changes and the related ontology evolutions.

4.2 Capturing metadata changes

The evolution of the metadata can be captured through the changes occurring in
the corresponding set of terms, conceptual structures, and mappings. Documents
can be added or removed, leading to a different (either extended or reduced) set
of terms. The comparison of the results of the conceptual organisation of the
terms obtained at different times allows the consideration of changes from a more
abstract (conceptual) point of view, indicating for example previously unknown
relations between terms, or ones that have become obsolete. It is worth noticing
here that these conceptual structures are not ontologies, but rather intermediary
descriptions of the metadata, used to guide the integration (matching) with the
considered ontologies, and facilitating the study of metadata evolution. Finally,
new mappings to the ontologies may appear from the conceptual structure, and
some may be modified or reconsidered. Basically, by comparing the processed
metadata at different levels and different time points, we can trace, capture
and study these evolutions in an abstract, ontology-related representation. The
outcome here is a characterisation of the changes in the metadata that may lead
to particular evolution of ontologies.
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4.3 Suggesting ontology changes

Capturing the evolution of the metadata is only the first part of the problem.
Each evolution may lead to an extension of the existing gap between the meta-
data and the ontology coverage. For example, if some newly added terms have
no correspondence in the ontologies, an extension with additional concepts and
relations may be required. On the other hand, if the set of terms generated at
any moment in time is smaller than the set of terms generated previously (e.g.,
because some data has been deleted or because some terms are less significantly
represented) then this can lead to the pruning of the ontologies in such a way
that they do not contain obsolete concepts/relations. Our goal is to provide gen-
eral principles for suggesting changes in ontologies in order to fill this additional
gap. More precisely, studying the evolution of real-life datasets would allow us
to associate suggestions of changes in the ontology to typical changes in the cap-
tured metadata, thus providing a basis for guiding the maintenance of ontologies
according to the related metadata.

The proposed methodology for the bottom-up, metadata-driven evolution of
ontologies is summarized in Figure 1. It is illustrated in the next two sections
(4.4 and 4.5) by the application to two real life case studies.

Fig. 1. Schematic view of the bottom-up approach for ontology evolution

4.4 Case Study 1: Evolving ontologies through linking them to
folksonomies

Social tagging systems such as Flickr (http://www.flickr.com), for photo-sharing,
and Del.icio.us (http://del.icio.us), for social bookmarking, are becoming more
and more popular, nowadays covering a wide range of resources and communi-
ties, with a huge number of participants sharing and tagging a large number of
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resources. Due to their popularity, folksonomies are changing rapidly as users add
new resources and tags. Because they are updated continuously, folksonomies are
up-to-date with respect to the vocabulary used by a wide range of people, thus
reflecting new terms that appear. Unlike folksonomies, ontologies are built at a
much slower rate and therefore they often lag behind the novel terminology in a
given domain. A solution for automatically enriching (and hence evolving) on-
tologies is to align them to folksonomies and modify them so that they reflect the
changes in the folksonomies. This alignment is also beneficial for folksonomies.
Current tag sets lack any semantic relations and therefore are hard to use dur-
ing searching. The alignment to ontologies allows the enrichment of folksonomies
with semantic relations so that more semantic searches can be performed.

In this first case study, we investigate how ontology changes can be derived
from changes in folksonomies. The process of linking folksonomies to ontologies
has been described in [11] and will be used in the first part of the case study
(as it covers the first three major steps of our methodology). We investigate
the tag sets in Flickr and Del.icio.us, due both to their popularity (with a large
number of resources, users, and tags) and availability. In our experiments, we
use the same Del.ici.ous tags as [11] and Flickr tags for photos posted between
01-02-2004 and 01-03-2006.

Having derived the metadata following the work of [11], we need to capture
the way metadata changes. Our plan is to re-run the process described in their
work at different points in time and compare the output (i.e., see how the ob-
tained clusters differ). We will identify clusters that have been added or which
have disappeared. At a more fine-grained level, for each cluster we will monitor
internal changes, namely additions or elimination of some tags. All these types of
changes have important influences on the evolution of the ontology. Our task will
be to derive a wide range of metadata changes taking into account the metadata
derived in our experiments.

Once a set of changes in the metadata has been identified, these changes can
be used to suggest corresponding updates to the ontologies. While this typology
of changes will be derived when the experiments are run and therefore will
be grounded in actual data, we can already predict some typical changes. For
example, if a new cluster is added, then find an ontology that contains elements
(concepts/relations) with the same label as the tags in the cluster. If the ontology
only covers a subset of the terms, then find methods to extend the ontology with
concepts corresponding to the missing tags. If a new tag is added to a cluster,
then if no corresponding concept exists in the ontology to which the cluster was
aligned, insert the tag in the ontology.

4.5 Case Study 2: Data Driven Ontology Learning on FAO data

The second case study is performed on a different type of data set from the
previous case study. In this case, we investigate how ontologies can be evolved
through applying ontology learning methods to textual data. The data set used is
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a collection of textual data from the FAO4 (United Nations Food and Agriculture
Organisation, Fisheries Department). There are several collections, including
news items, fact sheets on species and internal documentation.

We envisage that pre-processing will be performed using existing software
packages. In particular, we will experiment with three tools: TermExtractor [10]
– a web service for the extraction of domain relevant terminology; GATE [4]
– a suite of natural language applications for document annotation; Text2Onto
[3] – an ontology learning tool that provides a variety of algorithms needed
for the entire process of ontology learning. Some of these algorithms deal with
the simplest task in ontology learning, that of extracting relevant terms from a
corpus.

The next step is one of conceptual organisation, which aims at deriving some
meaningful structure between the identified terms. Again, we envisage the pos-
sibility to use two different kinds of packages to perform this task: clustering
algorithms for when TermExtractor is used, leading to clusters similar to those
obtained in case study 1; and the ontology learning algorithms from Text2Onto
to derive an ontological structure between the identified terms (including sub-
sumption relations, mereological relations, general relations).

Depending on the conceptual structure derived previously, we can use a va-
riety of ontology matching approaches to align these structures to ontologies.
Simple, string-similarity based methods can be used to find correspondences
between terms in a cluster and the labels of ontology elements. If the derived
structures are richer than sets of terms, we can also employ structural matching
methods to find alignments between the derived ontologies and the ontologies
(ontology networks) that need to be updated.

Capturing metadata changes and linking them to updates in the correspond-
ing ontologies will be the topic of our investigation after running the above men-
tioned experiments. We can already say, however, that these types of changes will
somehow depend on the kind of conceptual structure that the metadata takes. If
we derive clusters of terms, then we can provide a similar typology of changes as
in case study 1. If the conceptual structures derived are ontologies, then we can
re-use and extend Klein’s typology of changes to capture changes between on-
tologies derived at different moments in time and then suggest adequate changes
in the ontologies.

5 Conclusion and Future Directions

In this paper we have described a framework and methodology to capture the
dynamics of metadata, consisting of two main aspects: the evolution of metadata
when an ontology changes, and changes to the ontology resulting from metadata
evolution. The first aspect involves using the Klein and Noy ontology as a start-
ing point, and proposing changes in order to make it more suitable for our needs.
We then discuss how this will be implemented. For the second aspect, we have

4 http://www.fao.org
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described a methodology for capturing changes in metadata with the aim of
suggesting changes in the related ontologies. We adopt a bottom-up approach,
studying the evolution of real-life datasets to come up with general principles for
metadata-driven ontology evolution. In this line of approach, we propose to ap-
ply this methodology to two concrete case studies, using two different datasets,
and two different forms of metadata: tags of folksonomies, and texts related to
the agricultural domain. Therefore, the obvious next step of this work is to run
the experiments corresponding to these case studies, capturing the evolution of
the metadata by relating the considered resources to the considered ontologies
at different points in time. We believe that the study of these ontology-based
metadata evolutions will allow us to understand and potentially capture the im-
plications of metadata changes on the related ontologies. The concrete outcome
of this work should be general rules for suggesting ontology changes to reflect
metadata changes, providing a basis for a metadata-driven ontology evolution.

Since metadata changes lead to ontology changes, and ontology changes lead
to metadata changes, the interactions between these two processes have to be
considered. We can therefore imagine an integrated process that would alterna-
tively suggest changes in ontologies and metadata until a stable version of both
elements is obtained.
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Abstract. In this paper, we present the ontology evolution methodology devel-
oped in the context of the BOEMIE 1 project. Ontology evolution in BOEMIE
relies on the results obtained through reasoning for the interpretation of multi-
media resources in order to evolve (enhance) the ontology, through population
of the ontology with new instances, or through enrichment of the ontology with
new concepts and new semantic relations.

1 Introduction

Ontology learning is a wide domain of research, involving methods and techniques
for the acquisition of an ontology from semantic information/conceptual knowledge
extracted from a domain. Being closely related to the field of knowledge acquisition, a
significant amount of the work has been presented in the bibliography that concentrates
on the task of knowledge acquisition from text, through the re-use of widely adopted
natural language processing and machine learning techniques [1, 2]. The methodology
proposed by the BOEMIE project tries to extend existing approaches by considering
modalities beyond text, such as still image, video and audio. The proposed methodol-
ogy can be separated into three major components:

– A multimodal information extraction engine. This information extraction engine is
responsible for extracting instances of “primitive” concepts as well as instances of
relations between concept instances, from documents belonging to the textual, still

? This paper has been partially funded by the BOEMIE Project, FP6-027538, 6th EU Frame-
work Programme.

1 http://www.boemie.org
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image, video and audio modalities. “Primitive” concepts (known as “mid-level”
concepts within BOEMIE) are concepts whose instances can be directly identified
in corpora of a specific modality. For example, in the textual modality the name
or the age of a person is a mid-level (or “primitive”) concept, as instances of
these concepts can be associated with relevant text portions. On the other hand,
the concept person is not a mid-level concept, as it is a “compound” concept
that has other concepts as properties, like the person name, age, gender, etc.
“Compound” concepts are referred as high-level concepts within the BOEMIE
project, and cannot be directly identified in a corpus and thus associated with a
corpus segment.

– A semantic interpretation engine, responsible for producing one or more explana-
tions of an event described in a document. Semantic interpretation operates on
the instances of mid-level concepts and relations between them extracted by the
information extraction engine, in order to create instances of high-level concepts
that explain the event, always according to the domain ontology. Semantic inter-
pretation is performed through standard (i.e. induction) but also non-standard
(i.e. abduction) reasoning services and is formalised as a two-level process. During
the first level, semantic interpretation is performed on the extracted information
(mid-level concept instances/relations) from a single modality only, in order to
form modality specific high-level concept instances. At a second level, the modal-
ity specific high-level instances are fused, in order to produce high level concept
instances that are not modality specific, and contain information extracted from
all involved modalities.

– An ontology evolution toolkit, which uses the results obtained through reasoning
at the interpretation phase in order to evolve (enhance) the ontology, through
population of the ontology with instances, or through enrichment of the ontology
with new concepts and new relation types.

In this paper, we focus on the BOEMIE evolution methodology and the role of
semantic interpretation for ontology evolution. Then, we describe how ontology popu-
lation and enrichment are articulated, by discussing the main design principles and by
describing samples evolution scenarios. The paper is organized as follows: a description
of the ontology evolution methodology in BOEMIE is given in Section 2. Methods and
techniques for multimedia interpretation by reasoning are discussed in Section 3. The
evolution activities of population and enrichment are presented in Sections 4 and 5,
respectively. In Section 6, we discuss the original contributions of the present work.
Finally, we give our concluding remarks in Section 7.

2 Ontology Evolution in BOEMIE

Ontology evolution within BOEMIE uses as input the results of the semantic repre-
sentation performed upon information extracted from multiple modalities (combined
through fusion). In order to be able to deal with all possible situations requiring evo-
lution, a pattern-driven approach is adopted. Typical input to the evolution toolkit
is in the form of ABoxes, containing the results of the semantic representation of
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the fused extracted information. These results typically include instances of mid-level
concepts, relation instances between mid-level concept instances, high-level instances,
relation instances between instances of high-level concepts, and possibly instances of
the “unknown” mid-level concept. According to the information contained in ABoxes
constituting the input, the evolution pattern selector selects the most prominent evo-
lution pattern, triggering either ontology population or ontology enrichment.

The BOEMIE ontology evolution methodology is shown in Figure 1.

EnrichmentPopulation

Extraction 
Process Input

Pattern Selection

ABoxes

Interpretation

Instance Matching

Instance Grouping

ABox refinement

ABox Validation

ABox Assimilation

Instance Matching

Instance Grouping

ABox Validation

ABox Assimilation

Concept Learning

Concept Enhancement

Concept Definition

Concept Validation

Concept Assimilation

Concept Learning

Concept Definition

Concept Validation

Concept Assimilation

Coordination

Output New evolved version of the
BOEMIE domain ontology

P1 P2 P3 P4

BOEMIE Domain Ontology

Fig. 1. The BOEMIE evolution methodology

Ontology population is the activity of adding new instances into the ontology and
it is performed every time at least one explanation can be found for a multimedia
resource.
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Ontology enrichment is the activity of extending the ontology, through the ad-
dition of new elements (e.g., concepts, relations, properties). Ontology enrichment is
performed every time the background knowledge is not sufficient to explain the ex-
tracted information from the processed multimedia documents. Thus, the ontology
enrichment activity is expected to extend this background knowledge through the
addition of new ontology elements.

Coordination is the activity of producing a log of the changes introduced into the
new evolved version of the ontology with respect to the initial version and of defining
and updating the mapping knowledge between the domain ontology and other related
external knowledge sources supporting the enrichment. Since this activity is affected by
the changes of the background knowledge, it is executed after the enrichment activity.

In the remainder of the paper, we focus on the reasoning activity for resource inter-
pretation and on the activities of ontology population and enrichment, by providing
some relevant example.

2.1 Evolution Patterns

The BOEMIE evolution approach is featured by two main requirements:

– the capability of classifying the different situations that trigger ontology evolution
by characterizing the results of the semantic interpretation process (i.e., the infor-
mation specified in the incoming A-Box) with respect to the background knowl-
edge;

– the definition of an appropriate activity articulation to correctly modify the on-
tology in each specific evolution situation.

The expected result of the semantic interpretation is a single explanation for a
multimedia resource, that is, the resource is instance of only one high-level concept.
However, other situations can occur when the background knowledge is not sufficient,
characterized either by more than one possible explanation for the same multimedia
resource or by the absence of explanations, meaning that no high-level concept can
be found in the ontology for describing such a resource. Finally, we can also have the
case where not only the high-level concept describing the resource is missing, but also
for one or more elements identified in the resource a mid-level concept can not be
assigned.

To take these requirements into account, four different evolution patterns (see Fig-
ure 2) have been identified for ontology evolution in BOEMIE. An evolution pattern
determines the characteristics of the input ABox it deals with, defines the kind of
evolution to be performed over the ontology (i.e., population or enrichment), and is
articulated into a set of activities for implementing all the required changes. Popula-
tion patterns (P1 and P2) describe the situation where the interpretation has found
one or more high-level concepts explaining the resource and, thus, the ontology popu-
lation activity is performed. Enrichment patterns (P3 and P4) describe the situation
where no high-level concepts explaining the resource are found in the ontology, thus
triggering ontology enrichment to acquire this missing knowledge. Pattern P4 has been
conceived to deal with situations where not only the high-level concept is missing (like
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Evolution Pattern

Population Pattern

Enrichment Pattern

Single explanation of the 
multimedia resource P1

Multiple explanation of the 
multimedia resource P2

Missing explanation of the 
multimedia resource with 

metadata information P3

Missing explanation of the 
multimedia resource without 

metadata information P4

Fig. 2. BOEMIE evolution patterns

P3) but also one or more mid-level concepts are missing for the interpretation of the
incoming resource. In case of missing explanations for mid-level concept instances,
pattern P4 is always selected as prominent, to first enrich the ontology with missing
mid-level concepts, thus enabling the interpretation of all mid-level concept instances.
Then, in a subsequent cycle, the most suitable pattern will be chosen for handling the
new situation appropriately.

3 Reasoning for Multimedia Interpretation

An ontology in a description logic framework is seen as a tuple consisting of a TBox
and an ABox. In order to construct a high-level interpretation, the ABox part of
the ontology is extended with some new assertions describing individuals and their
relations. These descriptions are derived by media interpretation processes using the
ontology (we assume the ontology axioms are denoted in a set Σ).

Interpretation processes are set up for different modalities, still images, videos, au-
dio, and texts. In this section we discuss the interpretation process using an example
interpretation for still images. The output is a symbolic description represented as an
ABox. This ABox is the result of an abduction process (see [3] for a general introduc-
tion). In this process a solution for the following equation is computed: Σ ∪ ∆ |= Γ .
The solution ∆ must satisfy certain side conditions.

The abduction inference service aims to construct a set of (minimal) ABox asser-
tions ∆ for a given set of assertions Γ such that ∆ is consistent w.r.t. to the knowledge
base (T ,A) and satisfies [4]:

1. T ∪ A ∪ ∆ |= Γ

2. If ∆
′
is an ABox satisfying T ∪ A ∪ ∆

′
|= Γ, then ∆

′
|= ∆ (Minimality)

3. ∆ 6|= Γ (Relevance)
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In Figure 3 an example from the athletics domain is presented. Assuming that it
is possible to detect a horizontal bar bar1, and a human human1 by image analysis
processes, the output of the analysis phase is represented as an ABox Γ . Assertions
for the individuals and (some of) their relations detected by analysing Figure 3 are
shown in Figure 4.

Fig. 3. Image displaying a high jump or
a pole vault event.

bar1 : Horizontal Bar
human1 : Human

(bar1, human1) : near

Fig. 4. ABox Γ representing the result of the
image analysis phase.

In order to continue the interpretation example, we assume that the ontology con-
tains the axioms shown in Figure 5 (the ABox of the ontology is assumed to be
empty). For some purposes, description logics are not expressive enough. Thus, some
additional mechanism is required without jeopardizing decidability. In order to cap-
ture constraints among aggregate parts, we assume that the ontology is extended with
DL-safe rules (rules that are applied to ABox individuals only). In Figure 6 a set of
rules for the athletics example is specified. Note that the spatial constraints touches
and near for the parts of a Pole V ault event (or a High Jump event) are not im-
posed by the TBox in Figure 5. Thus, rules are used to represent additional knowledge.
Since spatial relations depend on the specific “subphases” of the events, corresponding
clauses are included on the right-hand sides of the rules. For instance, a jumper as
part of a High Jump is near the bar if the image shows a High Jump in the jump
phase.

In the following we assume that rules such as those shown in Figure 6 are part of the
TBox Σ. In order to provide a high-level interpretation, i.e. to provide a description of
the image content in the form of high-level aggregates, we assume that spatial relations
between certain objects detected by low-level analysis processes are not arbitrary.

In order to construct an interpretation for the image in Figure 3, an explanation
is computed to answer why it is the case that a human is near a horizontal bar. Such
explanations are considered the results of image interpretation processes. As mentioned
above, the idea is to use the abduction inference service for deriving these kinds of
(minimal) explanations (in the sense of interpretations). Minimal explanations can be
extended appropriately in order to match expectations and task context.

We start with the computation of a minimal explanation in the athletics scenario.
For this purpose, we slightly modify the abduction equation by taking into considera-
tion that initially the ABox does not need to be empty. Thus, we divide Γ (see Figure 4)
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Athlete ≡ Human u ∃hasProfession.Sport
Jumper v Athlete

Pole v SportEquipment
Horizontal Bar v SportEquipment

Foam Mat v SportEquipment
Jumping Event v Eventu

∃≤1hasParticipant.Jumper
Pole V ault v Jumping Eventu

∃hasPart.Poleu
∃hasPart.Horizontal Bar
∃hasPart.Foam Mat

High Jump v Jumping Eventu
∃hasPart.Horizontal Bar
∃hasPart.Foam Mat

PV InStartPhase v >
PV InEndStartPhase v >

HJ InJumpPhase v >

Fig. 5. A tiny example TBox Σ for the athletics domain.

touches(Y, Z) ← Pole V ault(X),
PV InStartPhase(X),
hasParticipant(X, Y ), Jumper(Y ),
hasPart(X, Z), Pole(Z).

near(Y, Z) ← Pole V ault(X),
PV InEndStartPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasParticipant(X, Z), Jumper(Z).

near(Y, Z) ← High Jump(X),
HJ InJumpPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasParticipant(X, Z), Jumper(Z).

Fig. 6. Additional restrictions for Pole V ault and High Jump in the form of rules.

into a part Γ2 that the agent would like to have explained, and a part Γ1 that the
interpretation agent takes for granted. In our case Γ2 is {(bar1, human1) : near} and
Γ1 is {human1 : Human, bar1 : Horizontal Bar}.

Coming back to the abduction problem specified above, we need solution(s) for the
equation Σ ∪ ∆ ∪ Γ1 |= Γ2. In other words, given the background ontology Σ from
Figures 5 and 6, the query

Q1 := {() | near(bar1, human1)}

derived from Γ2 should return true.
Obviously, this is not the case if ∆ is empty. In order to see how an appropriate ∆

could be derived, let us have a look at the rules in Figure 6. In particular, let us focus on
the rules for Pole V ault first. If we apply the rules to the query in a backward chaining
way (i.e. from left to right) and unify corresponding terms we get variable bindings
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for Y and Z. The “unbound” variable X of the corresponding rules is instantiated
with fresh individuals (e.g. pv1). It is easy to see that two possible solutions for the
abduction equation can be derived. For this example the output of the interpretation
process are two interpretation ABoxes representing two possible interpretations of the
same image (see Figures 7 and 8). As a result, this example illustrates the situation
where evolution pattern P2 can be triggered.

human1 : Human
bar1 : Horizontal Bar

(bar1, human1) : near
hj1 : High jump
hj1 : HJ InJumpPhase

human1 : Jumper
(hj1, human1) : hasParticipant

(hj1, bar1) : hasPart

Fig. 7. ABox representing the first result
of the abduction process.

human1 : Human
bar1 : Horizontal Bar

(bar1, human1) : near
pv1 : Pole V ault
pv1 : PV InEndStartPhase

human1 : Jumper
(pv1, human1) : hasParticipant

(pv1, bar1) : hasPart

Fig. 8. ABox representing the second result
of the abduction process.

Note that due to the involvement of human1 in the pole vault event in Figure 7,
human1 is now seen as an instance of Jumper, and, due to the TBox, also as an
Athlete. Thus, information from high-level events also influences information that is
available about the related parts. With queries for Jumpers the corresponding media
objects would not have been found otherwise. Thus, recognizing high-level events is of
utmost importance in information retrieval systems (and pure content-based retrieval
does not help).

The example discussed here covers the interpretation of still images. It is necessary,
however, to keep in mind that each media object might consist of multiple modalities,
each of which will be the basis of modality-specific interpretation results (ABoxes).
In order to provide for an integrated representation of the interpretation of media
objects as a whole, these modality-specific interpretation results must be appropri-
ately integrated. A cornerstone of this integration process will be to determine which
modality-specific names refer to the same domain object. This will be discussed in
later sections.

Continuing the example, it might be the case that for some images the ontology
does not contain relevant axioms or rules. In this case, the interpretation result, i.e. the
result of solving the abduction problem Σ ∪∆∪Γ1 |= Γ2 will be degenerated because,
due to missing axioms or rules in Σ, ∆ must necessarily be equal to Γ2 in order to solve
the equation. As an example of such a situation we can discuss an interpretation of
Figure 3 without the rules from Figure 6 and the GCIs for Pole V ault and High Jump
in Figure 5. The degenerate interpretation result is shown (as Γ ) in Figure 4. This
result illustrates the situation where evolution pattern P4 can be triggered.
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4 Ontology Population

Ontology population is the process of inserting concept instances and relation instances
into an existing ontology. The proposed by BOEMIE approach for ontology population
is built upon two axes: entity disambiguation and consistency maintenance. With
entity disambiguation we refer to the process of identifying instances that refer to the
same real object or event. If an ontology is populated with an instance without checking
if the real object or event represented by the instance already exists in the ontology
(as an instance that has populated the ontology at an earlier population step), then
redundant information (in the best case) will be inserted into the ontology. A worst
case scenario is the redundant instances to contain contradicting information, which
may lead to an inconsistent ontology. At the same time maintaining the consistency of
an ontology is crucial (mainly through the elimination of contradictory information),
as an inconsistent ontology can not be used to reason with.

The ontology population activity can be decomposed into the following tasks:

– Instance matching: The first task of the population activity is the identification of
similar instances contained in the ontology for each HLC instance (HLCi) in the
set of explanations. Having a single HLCi as input, instance matching is expected
to return a set of instances that populate the HLC and are similar to the incoming
HLCi. Each returned matching instance is also expected to have a similarity figure,
which measures the similarity of the two HLCis. The results of instance matching
can be used to group instances that represent the same real object or event (as
HLCis that are similar are assumed to represent the same real object or event)
and possibly help in disambiguating multiple explanations in the case of evolution
pattern P2 (during the ABox refinement task).

– Instance grouping: This task is responsible for grouping all the instances that
represent the same real object or event, by exploiting the results of the instance
matching task, where every incoming HLCi has been matched with a set of other
instances that populate this HLC. Instance grouping is responsible to decide which
of these matching instances clusters will be kept and grouped together to form a
group that represents the same real object or event.

– ABox refinement (evolution pattern P2 only): In case of multiple explanations
the most suitable explanation is selected by exploiting the results of the instance
matching/grouping tasks. Assertions related to the rest of the explanations are
removed from the ABox, thus leading to a refined version of it.

– ABox validation: This task performs consistency checking, to detect possible in-
consistencies due to the additions that will be performed to the ontology. Two
tasks must be validated: the addition of the incoming ABox (i.e., the one that
originally triggered the population activity) into the ontology and the addition
of a new instance of a grouping concept or the modification of an existing one.
Both types of validation can be performed through standard reasoning (inference)
services.

– ABox assimilation: The final task is responsible for performing the needed changes
in the ontology (by creating all instances/relations in all ontological modules), in
order to incorporate the information in the new ABox into the ontology.
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Continuing the example presented in Section 3 where the ABox obtained by the seman-
tic interpretation process contains two explanations (Figures 7 and 8), if this ABox is
processed by the evolution pattern selector, then evolution pattern P2 will be selected,
triggering a population operation. The first task of population (instance matching) will
try to measure the similarity of each of the explanations found in the input ABox with
instances already in the ontology, explained by the same concept. For example, in the
case of the first explanation which is explained by an instance of the High Jump con-
cept (hj2), instance matching will employ matching techniques in order to measure the
similarity of the hj2 instance with all instances that already populate the High Jump
concept. The same will happen for the pv2 instance, and all other instances of HLCs
that may be found in the input ABox (such as human2). During instance grouping, all
instances that were found similar during instance matching (i.e. they had a similarity
above a certain threshold) will be checked whether they represent the same real object
or event, and instances that do represent the same real object or event will be grouped
by associating them with an instance that represents this real object or event (and
no instances will be merged or eliminated from the ontology). For example, if there
was enough information to identify that instance human2 refers to the same person
as another instance humanx already in the ontology, then both human2 and humanx

will be retained and associated with a new instance humanreal that represents the
real person (while human2 and humanx are seen as “participations” of this person in
specific event, location and time, which may even have different properties like age).
Returning to our example, due to the very limiting information available, no grouping
can be performed for any of the instances, as usually grouping requires information
from more than one modality (i.e. the name of the athlete usually provided by the text
modality is important to identify whether two instances refer to the same athlete).

Assuming that enough instances of both High Jump and Pole V ault concepts
exist in the ontology, the ABox refinement task may be able to disambiguate multiple
explanations, by selecting one instance as most “prominant”. For example, the overal
similarity of the hj2 with other instances of the High Jump concept may be better
than the overal similarity of pv2 with other instances of Pole V ault (i.e. due to a
missing pole instance). In such a case, a single explanation (i.e. hj2) will be selected
from the available explanations. In such a case, all instances not associated with hj2,
such as pv2, will be discarded from the input ABox. Finally, during ABox validation
the resulting ABox will be checked for consistency and if it is found to be consistent,
it will be assimilated to the ontology.

5 Ontology Enrichment

Ontology enrichment is the activity of extending an ontology, through the addition of
new concepts and relations. Ontology enrichment is performed every time the back-
ground knowledge is not sufficient to explain the extracted information from the pro-
cessed multimedia documents. Thus, the ontology enrichment activity is expected to
extend this background knowledge through the addition of new concepts/relations, in
order to better explain extracted information in the future.

International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, June 7, 2007

50



The ontology enrichment activity is triggered by either P3 or P4 evolution patterns.
Evolution pattern P3 is selected when no explanation (i.e., an HLCi) has be found for
a given ABox, and can lead to the insertion of a new HLC or a new relation into
the ontology, or in the accumulation of the ABox in a “waiting” queue if available
evidence cannot justify the addition of a new concept/relation. On the other hand,
evolution pattern P4 is selected when the background knowledge is not sufficient to
even assign MLCs to all of the extracted elements of a multimedia resource, thus
inserting instances of the “unknown” MLC in the ABox. In this case, pattern P4 can
result in the addition of a new MLC in the ontology. In fact, the detection of new MLCs
is considered to have priority over the identification of new HLCs, because knowledge
about a new MLC can lead to different semantic interpretation results about the same
resources. As a result, when instances of the “unknown” MLC are found in ABoxes
that contain no explanations, evolution pattern P4 is selected instead of P3.

Ontology enrichment is decomposed into the following tasks:

– Concept learning: The goal of this task is to propose new concepts (either HLCs or
MLCs) and relations by exploiting similarities found through clustering, either in
unexplained documents (evolution pattern P3) or in unknown objects recognised
by the information extraction engine (evolution pattern P4). It can be decomposed
into two main sub-tasks, clustering and concept formation.
• Clustering: The main objective of the clustering task is to provide evidence

that can support the creation of new concepts or relations.
• Concept formation: This task is applicable only if a new HLC has been pro-

posed by clustering. Exploiting the results of clustering, concept formation ex-
amines the clustered elements in order to extract common information (such as
concepts/properties and relations) and use this common information to form
a new concept, which is the result of this task.

– Concept enhancement (evolution pattern P3 only): This task is responsible for
improving a concept identified by concept learning, through knowledge acquired
from external sources, such as external domain ontologies or taxonomies.

– Concept definition: This task receives the new concept (either a new MLC or HLC)
or relation as defined through the previous tasks, and shows the concept/relation
definition to the ontology expert. The ontology expert must approve the new
concept/relation in order to be assimilated into the ontology and additionally
can revise the definition of the new concept/relation.

– Concept validation: This task performs consistency checking, by trying to detect
possible inconsistencies due to the addition of the new concept relation to the
ontology.

– Concept assimilation: The last task of ontology enrichment is responsible for per-
forming the needed changes in the ontology in order to incorporate the newly
formed concept/relation into the ontology.

As an example, we can assume an ABox where the semantic interpretation activity
was unable to found an explanation, and in addition instances of the ”unknown” MLC
have been extracted by the information extraction toolkit. When such an ABox is
processed by the evolution pattern selector, pattern P4 will be selected. In such a case,
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the ABox will be placed in a “waiting” stage. Once a significant number of instances of
the “unknown” MLC have been assimilated, then clustering will be performed, during
concept formation. If enough (modality specific) information is available that can lead
to the formation of clusters, the concept definition task is responsible to present the
results of the clustering to the ontology expert. The ontology expert must decide if
the presented information is enough to justify the addition of a new MLC. In such a
case, the expert must define the new concept(s), and associate all presented instances
represented by the new concept with it.

In case of an ABox that has no explanation and also no instances of the “unknown”
MLC, evolution pattern P3 will be selected. In such a case, the ABox will be also placed
in a “waiting” stage, until enough ABoxes have been gathered. The ABox gathered
are clustered in order to obtain clusters of ABoxes that are similar and all ABoxes in
a cluster can possibly be explained by a single concept, which is not contained into
the current version of the ontology. Once clusters have been identified, a new concept
is formed for each found cluster by using all common information among all ABoxes
of the cluster. Each newly formed concept will be further enhanced during concept
enhancement, by trying to locate the formed concept in external knowledge sources
through coordination and exploiting information from these knowledge sources, like
concept/relation names and properties. Once new concepts/relations have been formed
and possibly enhanced, they must be approved and reviewed by the ontology expert
during the concept definition task: the expert must decide which of these proposed
concepts/relations will be kept, what their definition will be and which ABoxes can be
associated with them. Each concept/relation definition must be checked for consistency
and assimilated into the ontology, if no inconcistencies have been found.

6 Original Contributions

The recent success of distributed and dynamic infrastructures for knowledge sharing
has raised the need of semiautomatic/automatic ontology evolution strategies [5, 6].
An overview of some proposed approaches in this direction is presented in [7], even if
limited concrete results have appeared in the literature. In most recent work, formal
and logic-based approaches to ontology evolution are also being proposed. In [8], the
authors provide a formal model for handling the semantics of change phase embedded
in the evolution process of an OWL ontology. The proposed formalization allows to
define and to preserve arbitrary consistency conditions (i.e., structural, logical, and
user-defined).

A six-phase evolution methodology has been implemented within the KAON [9]
infrastructure for business-oriented ontology management. The ontology evolution pro-
cess starts with the capturing phase, that identifies the ontology modifications to apply
either from the explicit business requirements or from the results of a change discovery
activity. In the representation phase, the identified changes are described in a suitable
format according to the specification language of the ontology to modify (e.g., OWL).
The effects of the changes are evaluated in the semantics of change phase, where the
ontology consistency check is also performed. Due to the fact that an ontology can
reuse or extend other ontologies (e.g., through inclusion or mapping), the propaga-
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tion phase ensures that any ontology change is propagated to the possible dependent
artifacts in order to preserve the overall consistency. The subsequent implementation
phase has the role to log all the performed changes in order to support the recovery
facilities that in the final validation phase are provided to reverse an ontology change
in case that an undesired effect occurs.

With respect to the state of the art literature on ontology evolution, original con-
tributions of BOEMIE can be seen at two different levels, the whole methodology and
the specific activities. The methodology as a whole proposes a new conceptualization
of the problem of evolving multimedia ontologies, by presenting a pattern-driven evo-
lution approach, where the most prominent evolution pattern for a specific evolution
scenario is automatically identified on the basis of the results of the semantic interpre-
tation activity against the background knowledge. Moreover, the methodology aims
to minimize the human involvement by providing a set of learning, matching, and
reasoning techniques that offer support in the various evolution activities, to allow
the ontology expert to refine proposed working knowledge and/or to validate/choose
among proposed alternative choices. Concerning novel contributions at the level of spe-
cific activities, the methodology for ontology population uses an innovative approach
for the detection of instances which refer to the same real object or event, based on
instance matching and non-standard clustering techniques. For ontology enrichment,
clustering is used for detecting enough information to support the introduction of a
new concept/relation and this supporting information is enhanced though information
retrieved from external knowledge sources. Thus, the involvement of the ontology ex-
pert is reduced, as the expert is required to revise an already formed concept/relation
than define this concept/relation from scratch. Matching techniques are used in combi-
nation with reasoning and clustering techniques in BOEMIE, thus leading to the devel-
opment of a more flexible and comprehensive approach to concept/instance matching
for evolution, by enforcing both structural matching and semantic matching.

The ontology evolution approach proposed by BOEMIE puts significant effort in
maintaining the consistency of the ontology while trying on the same time to identify
and eliminate redundant information. With respect to the state of the art in the field
of knowledge representation and reasoning, the novel contribution of the evolution
methodology regards the following issues: i) formalization of high-level multimedia in-
terpretation as a logical decision problem and its implementation as a non-standard
inference service, namely abduction; ii) extension of the knowledge representation for-
malism (SWRL) in order to support adequate knowledge representation for abduction
tasks; iii) development of new optimization techniques for ABox consistency checking
and query answering and its integration into a state-of-the art DL reasoner; iv) first
approach for using non-standard description logic inference problems for formalizing
the learning problem in BOEMIE (e.g., LCS, MSC, rewriting).

7 Concluding Remarks

In this paper, we have presented the methodology for multimedia ontology evolution
developed in the context of the BOEMIE project. We have specified how the semantic
interpretation of the information extracted from multimedia resources can be used to
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achieve the coordinated and consistent evolution of the ontology. We have described
different evolution scenarios triggering population or enrichment patterns over the on-
tology. Current and future work within BOEMIE is devoted to: i) the investigation of
instance matching techniques to support ontology population and to complement the
role of reasoning techniques in the resource interpretation activity; ii) the investigation
of clustering techniques to extract common information (such as concepts and rela-
tions) from ABoxes and use this common information to form new concepts; iii) the
implementation of an ontology evolution toolkit providing an interactive environment
where all the proposed techniques will be integrated into a coherent whole according
to an open architecture.
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Abstract. We present a semi-automated process that constructs an on-
tology based on a collection of document abstracts for a given domain.
The proposed process relies on the formal concept analysis (fca), an al-
gebraic method for the derivation of a conceptual hierarchy, namely ’con-
cept lattice’, starting from data context, i.e., set of individuals provided
with their properties. First, we show how various contexts are extracted
and then how concepts of the corresponding lattices are turned into onto-
logical concepts. In order to refine the obtained ontology with transversal
relations, the links between individuals that appear in the text are con-
sidered by the means of a richer data format. Indeed, Relational Concept
Analysis (rca), a framework that helps fca in mining relational data is
used to model these links and then inferring relations between formal
concepts whose semantic is similar to roles between concepts in ontolo-
gies. The process describes how the final ontology is mapped to logical
formulae which can be expressed in the Description Logics (dl) language
FLE . To illustrate the process, the construction of a sample ontology on
the astronomical field is considered.

1 Introduction

Knowledge systems are of great importance in many fields, since they allow
knowledge representation, sharing and reasoning. However, the knowledge acqui-
sition process is complex and can be seen as a ”bottleneck” [12]. The difficulty is
to acquire knowledge (especially from experts) and then to maintain knowledge
in a given domain. For example, in the area of astronomy, assigning classes to
the growing number of celestial objects is a difficult task and leads to a large
number of classes. Traditionally, this classification task is performed manually
according to the object properties appearing in the astronomy documents. The
task consists in reading articles of various sources that deal with a given celes-
tial objects and finding the corresponding class. At present, more than three
million celestial objects were classified in this way and made available through
the Simbad database1, but considerable work has to be done in order to classify
the billion remaining objects. Moreover, human experts are not confident with
the resulting classification as the classes lack precise definitions to be examined
when a new object must be classified.
1 http://simbad.u-strasbg.fr/simbad/sim-fid
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The spread of languages and frameworks for building ontologies, mainly
within the Semantic Web initiative, has turned current trends in classification
towards the construction of classification in the form of ontologies [15]. Ontolo-
gies are an explicit specification of a domain conceptualization, developed for
the purpose of sharing and reuse. It comprises a set of concepts and a set of
taxonomic and transversal relations. In attempt to bring a formal representa-
tion to the ontology components (concepts, roles, etc.), several studies [8] have
documented the mapping of an ontology into dl formulae. Such translation is
crucial as it makes the domain knowledge encoded by the means of ontology at
the disposal of dl reasoners which in turn enables sharing and reasoning on a
clear semantic basis.

The aim of this paper is to introduce a semi-automated process for the con-
struction of classifications in the form of ontologies [15] and the derivation of ex-
pressions in Description Logics (dl) that formally describes the resulting classes.
Several approaches were proposed for ontology construction, such those relying
on Formal Concept Analysis (fca) [3]. fca is a mathematical approach for ab-
stracting conceptual hierarchies from set of individuals (e.g., celestial objects,
telescopes, etc.) and the set of their properties (e.g., emitting, collimated, mass,
etc). These individuals and their properties are extracted from text corpora using
NLP tools. Applying fca with the aim of ontology construction brings forward
two main benefits. First, the formal characterization of the fca-powered con-
cept hierarchy provides a basis for a formal specification to the derived ontology.
Moreover, many efficient operations have been designed in fca to maintain the
concept hierarchy over data evaluation, such as those performing an incremental
update of the hierarchy by adding either a formal object or a formal attribute
and those operations for lattice assembly from parts [13]. These various opera-
tions could be used to solve the ’bottleneck’ problem in knowledge acquisition.
Indeed, when the concept hierarchy changes, the ontology will evolve and still
be correct and consistent.

However, in order to deal with complex descriptions of individuals that go
beyond a mere conjunction of properties, an extended fca framework, namely
’Relational Concept Analysis’ (rca) is used to derive conceptual hierarchies
where, beside property sharing, formed concepts reflect commonalties in object
links [5]. rca approach lifts up links between individuals to the rank of relations
between concepts whose meaning is similar to roles in ontologies. rca output —
concepts organized by a partial order relation — is translated in a very obvious
way to an ontology components [9]. Moreover, recent advances in combining rca
and dl languages have shown how rca output, in particular concepts provided
with relational descriptions, can be expressed in the form of dl formulae ranging
in the FLE2 language family [7].

The proposed process is fed with astronomy data to classify celestial objects.
The translation of the ontology into a dl knowledge base (kb) allows querying
the kb through a dl reasoner and thus answering to ‘competency questions’.

2 dl language that comprises the following constructors: conjunction u, universal
quantification ∀ and existential quantification ∃.
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These questions are first written in natural language and then translated into
the dl language. Competency questions look like ‘do objects M87 and PSRA belong
to the same class?’, ‘Which objects can be observed with an Xray telescope?’, or
‘What are the objects that MXX-Newton observes?’, etc.

The paper starts with an overview of the proposed methodology that builds a
domain ontology based on free text. The next section introduces the processing
texts with NLP tools that are used to collect rca data. Section 4 recalls the
fca method, its extended framework rca, and their application to the domain
of astronomy. Section 5 presents the translation of the rca output into dl kb.
First, general rules are listed and then applied to the result of the previous step.
We present in the section 6 the related work and conclude with brief discussion
on the learned facts and the remaining open issues.

2 Methodology

Our methodology (described in figure 1) is based on ”Methontology” [1]. The
”Methontology” is a semi-automatic methodology, that builds an ontology from
a set of terms extracted from resources (the resources are not specified). The
objective is to find the exhaustive definition for each concept and each relation
of the ontology in dl language. The four steps of the ”Methontology” are adapted
on proposed methodology.

Fig. 1. Mapping between the ”Methontology” and Methodology + RCA

Resources: They are represented by the texts corpora, the thesaurus of as-
tronomy3 and the syntactic patterns4 such as: all NGC nnnn where n is a number
represents one celestial object.
3 http://msowww.anu.edu.au/library/thesaurus/
4 http://simbad.u-strasbg.fr/simbad/sim-fid
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Build glossary of terms: The extraction of the terms is done from the texts
corpora using the existing resources in the astronomical domain. We extract also
in this step the pairs (object,property) and the tuples (object,relation,object)
using Natural language processing (NLP) tools.

Build concept taxonomies: We propose in this step to use the fca. The fca
is the mathematical tool (presented in the section 4) that builds the hierarchy
of concepts by grouping the terms sharing the same properties.

Build transversal binary relation diagrams: The extraction of the transver-
sal relations is done in the same time as the construction of new hierarchy of
concepts taking into account their properties and also their links with other
objects. This step is done with rca (see the section 4).

Describe all elements of the ontology: The representation of all concepts,
relations and instances is done with FLE language. The representation in a
dl language is done to support reasoning, i.e. classification, instantiation and
consistency checking (see the section 5).

3 Processing texts with NLP tools

We want to extract the pairs (object,property) and the tuples
(object1,link,object2) from the text corpora. The links, in the tuples, are
used to define the set of the relations in the ontology (see section 4.2). We
choose to use the Faure’s approach [4] based on the Harris hypothesis [16]. This
hypothesis studies the syntactic regularities in the text corpora of sub-languages
(or specific languages), allowing to identify the syntactic schema to build classes.
There classes are grouping the terms (celestial objects) that are arguments
of the same set of verbs, i.e., the subject of the same set of verbs and the
complement of the same set of verbs. For example: The set {HR5223, PRSA,
SS433} are in the same class because they are appearing as subject with the
verb {to emit} and as complement with the set of verbs {to observe,to locate}.
The set of verbs is translated to the set of properties, like for example if one
term are subject of the verb ”to emit”, it has a property ”emitting” and if one
term are complement of the verb ”to observe”, it has the property ”observed”.
We use the same approach to extract the set of links, if object1 is the subject
of the verb V and the object2 the complement of the verb V then we extract
the tuple (object1,VP,object2) where VP is the verb phrase which represent the
link between (object1,object2).

The parsing of the corpus is done with the shallow parser “Stanford Parser”5 [6].
We give two examples in the astronomic domain:

1. “One HR2 candidate was detected and regrouped in each of the galaxies
NGC 3507 and CygnusA”. We extract the pairs: (HR2, regrouped), (HR2,
detected), (NGC 3507, regrouping), (CygnusA, regrouping).

5 http://nlp.stanford.edu/software/lex-parser.shtml
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2. ‘The XMM-Newton X-ray telescope observed the bursting pulsar M87”, the
extraction process will first identify XMM-Newton X-ray as a Telescope,
and M87 as a celestial object. We extract the tuple : (M87, Observed-
ByXRay,XMM-Newton X-ray).

4 Background on concept lattices

4.1 Basics of FCA

fca is a mathematical approach to data analysis based on lattice theory. The
basic data format in fca [3] is a binary table K = (G,M, I) called formal
context, where G is a set of individuals (called objects), M a set of proper-
ties (called attributes) and I the relation ”has” on G × M . Table in the left-
hand side of Fig. 2 represents an example of context. Here, G is the set of
celestial objects and M the set of their properties. A pair (X,Y ) where
X is a maximal set of individuals (called extent) and Y is a maximal set
of shared properties (called intent), is called a formal concept. For instance,
({Andromeda, NGC3507}, {observed, grouping}) is a concept (see diagram in
the right hand side of Fig. 2).

Celestial objects
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PSRA X X X

NGC3507 X X

Andromeda X X X

M87 X X X

HR2 X X

NGC2018 X X X

HR5223 X X X

SS433 X X X

Fig. 2. The binary context of celestial objects and the corresponding concept lattice.

Furthermore, the set CK of all concepts of the context K = (G,M, I) is
partially ordered by extent inclusion also called the specialization (denoted ≤K)
between concepts. L = 〈CK,≤K〉 is a complete lattice, called the concept lattice.
Fig. 2 illustrates a context and its corresponding lattice. A simplified (or reduced)
labeling schema is often used where each object and each attribute appear only
once on the diagram. The full extent of a concept is made up of all objects
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whose labels can be reached along a descending path from the concept while its
full intent can be recovered in a dual way (ascending path). For details on the
construction of concept lattices, see [3].

As many practical applications involve non-binary data, many-valued con-
texts has been introduced in fca where individuals have value associated to
properties. The construction of a lattice for this kind of contexts requires a pre-
processing step, called conceptual scaling [3], that derives a binary context out of
many-valued one. Scaling turns a non-binary attribute into a set of binary ones
representing abstractions of values on the domain of the underlying non-binary
attribute. For instance, the values of non-binary attribute orbitalPeriod in the
context illustrated in Tab. 1 could be distributed on the ranges short and long,
each of them expressed as a predicate (e.g., orbital period ≤ 24 hours for short
one). Observe that the definition of the predicates precedes the scaling task and
is usually in charge of a domain expert.

4.2 From FCA to RCA

Relational Concept Analysis (rca)[5] was introduced as an extended fca frame-
work for extracting formal concepts from sets of individuals described by ’local ’
properties and links. In rca data are organized within a structure called ’rela-
tional context family ’ (rcf). rcf comprises a set of contexts Ki = (Gi,Mi, Ii)
and a set of binary relations rk ⊆ Gi ×Gj , where Gi and Gj are the object sets
of the contexts Ki and Kj , called domain and range, respectively. For instance,
table in Fig. 2 and Tab. 1 depict a sample rcf made of two contexts, celestial
objects context and telescopes context.Two inter-context relations, ’Observed
By Xray ’ (OBXray) and ’Observed By Infrared ’ (OBInfrared) indicate the obser-
vation links between telescopes and objects.

The relationnal and non relationnal attributes in both contexts list the fea-
tures of objects such as the orbit height (perigee) and the orbital period for
telescopes and emitting or grouping faculty for the celestial objects.

Telescopes
perigee orbitalPeriod mass

BeppoSAX 600 km 96 min 1400 kg
XMM-Newton 114000 km 48 hours 3800 kg
Chandra 26300 km 66 hours 1790 kg

OBXray
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HR5223 X
SS433 X

Table 1. Sample rcf encoding astronomy data.

rca uses the mechanism of ’relational scaling ’ which translates domain struc-
tures (concept lattices) into binary predicates describing individual subsets.
Thus, for a given relation r which links formal objects from Ki = (Gi,Mi, Ii)
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to those from Kj = (Gj ,Mj , Ij), new kind of attributes, called ’relational at-
tributes are created and denoted by r:c, where c is concept in Kj . For a given
object g ∈ Gi, relational attribute r : c characterizes the correlation of r(g) and
the extent of c = (X, Y ). Many levels of correlation can be considered such as the
‘universal’ correlation r(g) ⊆ X and the ‘existential’ correlation r(g) ∩X. Due
to correlation constraint, existential encoding of object links yields to richer link
sharing among objects and thus a wider conceptual structure to explore when
mining relevant concepts. In the present work, we consider only existential scal-
ing.
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BeppoSAX X X X

XMM-Newton X X X

Chandra X X X

Fig. 3. The derived context of telescopes and the corresponding lattice.

For example, suppose that the context of celestial objects has to be scaled
along the relation OBXray with respect to the lattice given in Fig. 3. As
OBXray(M87) = {XMM Newton} and the telescope XMM Newton is present in the
extent of concepts c2, c3 and c5 (see Fig. 3), the celestial objects context is ex-
tended by relational attributes of the form r : ci, where i = {2, 3, 5}. Tab. 2
depicts the extended context of celestial objects after the scaling of both rela-
tions OBXray and OBInfrared. It can be noticed that beside local attributes, new
relational attributes encode object links that have been assigned to objects. For
instance, in Figure 4, objects HR5223 and SS433 in the concept c9 share the
attribute OBInfrared:c0 which is interpreted as a common link with telescope
BeppoSAX (the only object in the extent of concept c0 of Figure 3).
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HR5223 X X X X X X

M87 X X X X X X

SS433 X X X X X X

NGC2018 X X X X X X X
Table 2. The result of scaling of celestial objects context along its relations. Formal
objects that are not affected by relational scaling are not displayed.

4.3 Qualitative interpretation of RCA

The relational scaling is the key step in a process which, given an rcf, derives
a relational lattice family (rlf), one lattice by context. A relational attribute
is interpreted as a relation between two concepts, on the first side the concept
whose intent owns this attribute (i.e. the domain), and, on the other side, the
concept indicated in the relational attribute expression (i.e. the range). The
rlf extraction process is iterative since relational scaling modifies contexts and
thereby the corresponding lattices, which in turn, implies a re-scaling of all the
relations that use these lattices as source of predicates. This iterative process
stops when a fixed point is reached, i.e., additional scaling steps do not involve
any more context extension.

Fig. 4. The final relational lattice of celestial objects context

The analysis of the sample rcf using rca process yields to the concept lat-
tices illustrated in Fig. 3 and Fig. 4. Relational attributes in concept intents are
associated to the most specific concepts in the corresponding lattice. Telescope

International Workshop on Ontology Dynamics (IWOD-07), Innsbruck, Austria, June 7, 2007

62



context is not a domain of relation in the running rcf. Therefore, the final lat-
tice corresponds to the initial one shown in Fig. 3. By contrast, the lattice of
celestial objects context has changed. The resulting concepts trigger yet further
sharing, at the object links level. Indeed, the intents of various formal objects are
enriched with relational attributes encoding inter-object links. These attributes
lift up object link to relations between concepts. For example, the concept c6

in Fig. 2 represents the celestial objects M87 and NGC2018, that are both binary
stars as they are observed, located and collimated. The intent of the former con-
cept is encoded with the relational attribute OBXray:c5, meaning binary stars
are also observable by XRay telescopes. Moreover, new concept are discovered.
For example, even if the two celestial objects HR5223 and SS433 have already
composed a formal concept in the initial lattice (concept c0 in Fig. 2) with an
additional object, namely PSRA they let a new concept emerge in the final lattice
(concept c9 in Fig. 4), due to the common link they share with the telescope
BeppoSAX. The new concept represents the stars that are observable with an
Infrared telescope such as BeppoSAX.

5 Ontology derivation

The ontology resulting from the rca process is represented with the dl FLE .

The TBox

rca entity Ontology Example

Context K Atomic concept c ≡ α(K) α(Telescope)≡ Telescope

Formal attribute m ∈
M

Defined concept c ≡ α(m) ≡
∃m.>

α(observed)=Object ≡
∃observed.>

Concept c = (X, Y ) ∈ C Defined concept α(c), i.e. α(c) ≡
um∈Y α(m)

α(C5) ≡ ∃observed.> u
∃located.>

∀(c, c̄) ∈ C×C, i.e. c ≺ c̄ Inclusion axiom α(c) v α(c̄) α(C8) v α(C6)

Relation r ∈ R primitive role α(r) OBXray is a primitive role in
the TBox

Relational attribute r.C Atomic concept c ≡ α(r) ≡
∃r.α(c)

α(OBXray.XMM-Newton)≡
∃OBXray.XMM-Newton

The ABox

rca entity Ontology Example

Formal object g ∈ G Instance α(g) Andromeda is an instance

Element (g, m) ∈ I Assertion α(m)(α(g)) Object(HR2)

Let c = (X, Y ), ∀g ∈ X Concept instantiation
α(c)(α(g))

HR2 is an instance of the
concept Star

Table 3. Mapping between lattice and DL knowledge base

The translation between the rca formal concepts and relations and the dl
FLE is carried on using a function α defined as follows: α : (K,R) → TBox t
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ABox, where: (K,R) is a family rcf, TBox and ABox being the components of
the ontology. The function α is presented in the Tab. 3. The application of the
function α in the two lattices (Fig. 3 and Fig. 4) results in the ontology in the
Fig.5.

5.1 The translation of the concepts lattice into the ontology

The translation of each context represents an atomic concept, that express the
top > of the hierarchy in this context. Each formal attribute is translate in
defined concept. For example, attribute observed is translated into the concept
c ≡ ∃ observed.>. Each relational attribute r.C is translated in defined concept in
the TBox. For example, the relational attribute if the form OBXray.BeppoSAX
is translated into c ≡ ∃ OBXray.BeppoSAX, etc.

The design of the ontology is carried out in collaboration with as-
tronomers. The astronomers have to give a label to each concept in the on-
tology according to the properties and the links associated to the instances
of a concept. For example, the class of objects having the set of proper-
ties {observed,located,collimating} and the link {Observed-By-Xray} with
the range X-Ray-Telescope is labeled by Binary-Star. The class of objects
having the set of properties {observed,located,emitting} and the relation
{Observed-By-Infra-Red} with the range Infra-Red-Telescope is labeled by
Pulsing-Variable-Star: Infra-Red-Telescope observes Young-Star that has
a large emission compared with the X-Ray-Telescope that observes older stars
like Binary-Star. This representation is done only to give one label for each set
of celestial objects and to help the experts to read the ontology.

Fig. 5. Complete Ontology
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5.2 Representation of the concepts in the DL language FLE

The ontology is represented within the FLE language. Tab. 4 presents the de-
finition of each concept in the ontology presented in the figure (Fig. 5). The
ontology can be used for three kinds of tasks :

N◦ in the lattice Concept Name Defined Concept

C2 Object ∃observed.>
C5 Star ∃observed.> u ∃located.>
C0 Young-Star ∃observed.> u ∃located.> u ∃emitting.>
C9 Pulsing-

Variable-Star
∃observed.> u ∃located.> u ∃emitting.> u
∃OBInfrared. Infra-Red-Telescope

C6 Binary-Star ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.Xray Telescope

C7 M87 ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.XMM-Newton

C8 NGC 2018 ∃observed.> u ∃located.> u ∃collimated.> u
∃OBXray.Chandra

C3 Galaxy ∃observed.> u ∃grouping.>
C4 Individual-

Galaxy
∃observed.> u ∃grouping.> u ∃accreting.>

T2 Telescope Telescope

T4 light Telescope ∃light.>
T5 XRay-

Telescope
∃longOrbitalPeriod.> u ∃perigeeIsHight.>

T0 Infra-Red-
Telescope

∃shortOrbitalPeriod.> u ∃perigeeIsLow.>

T6 Chandra ∃longOrbitalPeriod.> u ∃perigeeIsHight.> u ∃light.>
T3 XMM-Newton ∃longOrbitalPeriod.> u ∃perigeeIsHight.> u ∃heavy.>

Table 4. Definition of each concept of the Fig 5 in FLE

1. Ontology population: Let o1 an object with the properties {a,b}, and
the relations {r1.c1,r2.c2}. A first task is instantiation,i.e. to find the
class of an object such as o1. The class of o1 is the most general class
X such that X v ∃a.>u∃b.>u∃r1.c1u∃r2.c2. For example, let us consider
the question ”What is the class of the object GRO, that has the prop-
erties {observed,located,emitting} and the relation OBInfrared with
the range Infra-red-Telescope? The answer is: the most general class
X v ∃observed.>u∃located.>u∃emitting.>u∃OBInfrared. Infra-red-Telescope.
This class in the ontology is the concept Pulsing-Variable-Star.

2. Comparison of celestial objects: Let us consider two objects o1 and
o2. A second task consists in comparing o1 and o2 and determining whether
o1 and o2 have the same class. One way for checking that is to find the
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class of o1, then the class of o2, and then to test whether the two classes are
equivalent. For example, let us consider the two objects M87 and PSRA. M87 is
an instance of the class M87 and PSRA is an instance of the class Young-Star.
Knowing that M87 u Young-Star = ⊥, it can be inferred that both objects
do not belong to the same class.

3. Detection of the domain or the range of relation: Let us consider the
relation r1 with the range C1. A third task consists in finding the domain
of the relation r1. The domain of r1 is the most specific class X such that X
is the most specific class, union of all the classes linked to the class C1 by
the relation r1. For example Which objects can be observed by Xray with a
Xray telescope? The most specific class domain of the relation observed by
Xray where Xray telescope is the range, is the concept Binary-star.

6 Related work

6.1 Building the core ontology

There are two main approaches for building ontologies from text corpora. The
first one is based on the co-occurrence of terms in text and on the use of similarity
measures for building the hierarchy of the objects classes [10]. This approach
can not satisfy our needs to give a definition to each concept of the hierarchy,
because every concept is represented by numeric vector and it is difficult to
find an interpretation for each vector. The second approach is symbolic, and is
based on the use of a syntactic structure to describe an object by the verb with
which it appears. Faure uses this structure for building the object classes and
the statistic measures for building the hierarchy of the classes [4]. Cimiano uses
the same approach but builds the hierarchy of classes using fca, without taking
into account the relations between objects [12].

6.2 Extracting the transversal relations

The extraction of transversal relations allows us to have a better definition of
each concept. The concepts are not only defined by their properties but also
by their relations with other concepts. We cite two related approaches in the
extraction of relations. The first one is the work of Aussenac-Gilles [11], who
proposes to use a learning method to extract syntactic patterns. Tuples manu-
ally extracted from the texts (term1, relation1, term2) are the inputs. All
the tuples (term1, relationk, term2) are searched to build a general rela-
tion R, such that R = relation1 t . . . t relationn. Then, tuples of the form
(termi, R, termj) are extracted. This method groups the set of objects accord-
ing to the relations that they share, and extracts the general relations between
two concepts. It does not use the hierarchy of the concepts to make a general-
ization. A second approach by Maedche and Staab [2] consists in extracting the
association rules [14] (term1 ⇒ term2) and in keeping only those rules having a
given support and frequency. This method finds all the pairs (C1, C2) linked by
one relation but does not specify the name of the relation between these pairs.
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7 Conclusion

A method for building an ontology from text corpora was proposed. The method
uses the rca framework that extends standard fca for mining relational data.
rca derives a structure that is compatible with an ontology. We have shown
how rca output could be represented in terms of dl expressions ranging in the
FLE dl family. The proposed method was applied to the astronomy domain
in order to extract knowledge about celestial objects that can be used through
a dl reasoner for problem-solving such as celestial objects classification and
comparison. The construction of a first prototype ontology from astronomy data
proved that rca-based ontology construction is a promising method allowing to
data mining and knowledge representation techniques.

On going work consists in improving the rca input data gathering process by
considering alternate syntactic patterns in the extraction of object pairs such as
(subject, verb), (complement, verb), (subject, adjective), etc. These new sorts of
pairs will provide a contexts with additional formal attributes that make formal
object descriptions richer as well as a new inter-context relations. Eventually, the
construction of hierarchy of relations need to be addressed. The principle consists
of using once again the rca abstraction process to introduce abstract relations
between concepts based on the transversal relations —originally inferred from
instances links— that hold among their subsumers. Once the derived relation hi-
erarchy merged with concept hierarchy, the resulting structure forms a complete
ontology that fully captures the domain knowledge.
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Abstract. Belief Revision deals with the problem of adding new infor-
mation to a knowledge base in a consistent way. The theory has been
developed having in mind classical logics. In this paper, we show some
problems of applying belief revision methods directly to ontologies rep-
resented in description logics and propose new operations that overcome
these problems.

1 Introduction

We have seen in recent years more and more attention devoted to the issue of
representing a domain of application by means of ontologies. After a period when
the main interest was on building new ontologies, lately there have been some
efforts towards tools for changing, repairing and maintaining ontologies.

Since knowledge is not static, there is a necessity to deal with the evolu-
tion of ontologies. When ontologies evolve, inconsistency may arise. There are
many approaches concerning how to deal with inconsistencies. In [1], a unifying
framework was described that accommodates four different approaches:

- Consistent evolution prevents the introduction of inconsistencies in a con-
sistent ontology.

- Repairing makes an inconsistent ontology consistent.
- Reasoning with inconsistency tries to derive meaningful conclusions from

an inconsistent ontology.
- Versioning keeps track of changes and compatibility issues between different

versions of the ontology.
Belief revision theory [2, 3] addresses the first two approaches for dealing

with inconsistency: preventing the introduction of inconsistency in a knowledge
base and repairing an inconsistent knowledge base. In addition to studying con-
structions for operations of revision in knowledge bases, belief revision studies
postulates that this constructions must satisfy. There are some proposals for con-
structing revision operators for ontologies, however almost none which takes care
of the formal properties that the operations satisfy. For this reason it became
important to study how to apply belief revision techniques in ontologies.

Alchourrón, Gärdenfors and Makinson in [4] proposed a set of postulates
that every operation of belief revision should satisfy. This set of postulates,
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together with some proposed constructions, is know as AGM paradigm due to
the authors’ initials. Although this is the most influential work in the area,
when we try to apply it to ontologies we have some problems: first the beliefs
of an agent are represented by belief sets, sets of sentences closed under the
consequence operator. Dealing with closed sets is a problem because they are
very often infinite. The second problem was presented in [5]. The author showed
in this work that some description logics can not satisfy the AGM postulates,
they are not AGM-compliant. In particular SHOIN and SHIFF, the description
logics behind OWL-DL and OWL-Lite, are not AGM-compliant. Some works [6,
7] present rational sets of postulates that could replace the AGM paradigm, but
they use belief sets too.

Although less intuitive, belief base revision [3] became a good alternative
because it relies on finite sets and moreover, it can be used with any compact
and monotonic logic as showed in [8]. In particular it can be used with any
description logic that receives just finite inputs. Although this works in theory,
the constructions for revision rely on the existence of negation in the logic and
many description logics do not admit the negation of all kinds of axioms. In
this paper, we propose two new options for belief base revision operations and
discuss the relation between them and the ones in the literature.

The paper proceeds as follows: in Section 2 we introduce the concepts of belief
revision that we will use and describe briefly some previous attempts to apply
belief revision to description logics. In Section 3, we present two new operations
characterized by sets of postulates and constructions. Then in Section 4, we
compare our operations to two other existing operations and show the relation
between them. Finally, in Section 5 we conclude and point towards future work.

2 Belief Revision and Description Logics

In this section, we briefly introduce the area of Belief Revision and some pre-
vious proposals to apply it to Description Logics. We first introduce the most
widely used theory for belief revision, known as the AGM paradigm due to the
authors of the seminal paper [4]. Then we discuss two proposals of applying the
AGM paradigm to description logics and their shortcomings. We next show an
alternative to AGM theory that is more suitable for computational needs and
extensively studied in the literature.

2.1 AGM theory and Description Logics

Traditionally, in AGM theory [4, 2, 9], the beliefs of an agent are represented by
a set of formulas closed under logical consequence, the belief set. Although the
logic used is not specified, there are several assumptions made which hold for
classical logic.

Three operations can be performed on belief sets: contraction, expansion and
revision. Contraction consists in giving up as many beliefs as needed so that the
new belief set does not imply a specified sentence. Expansion consists in adding
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information to the belief set. The result of an expansion can be a inconsistent
set. Revision is consistent incorporation of new information, i.e., if the input
sentence is consistent then the new belief set will be consistent (even if the old
belief set was not). If necessary, consistence is obtained by deleting some parts of
the original belief set. The operations are characterized by a set of axioms (the
rationality postulates) and several constructions have been proposed together
with representation theorems with respect to the postulates.

There are two main problems when one wishes to apply the original AGM
theory to practical problems. The first is the fact that the belief sets are as-
sumed to be closed under a consequence operator Cn, i.e., if K is a belief set,
then K = Cn(K). This usually means dealing with infinite sets. The second
problem is that the consequence operator Cn is assumed to be tarskian, com-
pact, satisfy the deduction theorem and supraclassicality. Following [10], we will
refer to these properties as the AGM-assumptions. The AGM-assumptions ex-
clude many interesting logics, such as many description logics.

Flouris et al. [10] have defined a class of AGM-compliant logics, that is, logics
in which a contraction operator can be defined satisfying the AGM postulates.
They have shown that all logics satisfying the AGM-assumptions (but not only
them) are AGM-compliant. As a negative result, he has shown that some im-
portant description logics, such as SHOIN and SHIFF are not AGM-compliant.

Later works [7, 6] presented sets of postulates that could replace the AGM
postulates for contraction and be used with a wider class of logics. Using the
set of postulates proposed in [6], any tarskian and compact logic (in particular
SHOIN and SHIFF) allows for a contraction operator satisfying the postulates.

However, if we want to use belief revision in real applications we should not
use infinite belief sets. For this reason, in the rest of this paper, we concentrate
on belief revision operations on belief bases, i.e., sets of formulas not necessarily
closed under the consequence operator.

Flouris [5] has studied the applicability of base operations to description
logics. He follows the work by Fuhrmann [11], where the AGM postulates have
been adapted to deal with bases. It was already noted in the literature that
these postulates were not suitable for belief base operations, due to the recovery
postulate, but Flouris has shown the properties needed in order for a logic to be
base-AGM-compliant. The conditions are stronger than the ones for the belief
set case, which exclude the logics we are interested in. This is why we chose to
follow Hansson’s approach, where new sets of postulates were designed specific
for the belief base case.

2.2 Belief Base Operations

Belief bases have been introduced in the literature [12, 13] as an alternative for
representing the beliefs of an agents. Belief bases are (usually finite) sets of
formulas not necessarily closed under logical consequence. The three operations
for belief change in the AGM paradigm can be adapted for belief bases. We
follow here the formalization in [3].
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Of the three AGM operations only expansion is characterized in an unique
way. When a belief base B is expanded with a proposition α, the resulting set
B + α is obtained by simply adding the new belief to the old belief set:

B + α = B ∪ {α}

Contraction and revision for belief bases are not uniquely defined, but as in
AGM theory, constrained by sets of postulates. Unlike AGM theory, the different
constructions proposed for contraction of belief bases are not equivalent (simi-
larly for revision), i.e., there is not a single set of postulates that characterizes
all constructions.

We will present in this section the operation of kernel contraction proposed
by Hansson in [14] and the set of postulates that characterizes this construction.

The construction makes use of the concept of kernel, the set of minimal
subsets of a given set that imply a given sentence:

Definition 1 Let B be a set of formulas and α a formula. The kernel B ⊥⊥α
of B and α is defined as follows. For any set Y, Y ∈ B ⊥⊥α if and only if:

– Y ⊆ B
– α ∈ Cn(Y )
– For all Y ′ such that Y ′ ⊂ Y , α /∈ Cn(Y ′)

An incision function σ selects at least one element of each kernel set. The
idea is that σ picks up enough elements from the kernel so that if these elements
were taken out of the belief base, then the new set would not imply the given
sentence.

Definition 2 An incision function σ for B is a function that for all α:

– σ(B ⊥⊥α) ⊆
⋃

(B ⊥⊥α)
– If ∅ 6= X ∈ B ⊥⊥α, then X ∩ σ(B ⊥⊥α) 6= ∅

Now we can define a kernel contraction for B:

Definition 3 Let B be a belief base, α a formula and σ an incision function for
B. The kernel contraction of B by α is defined as:

B −σ α = B \ σ(B ⊥⊥α)

Hansson has shown that:

Theorem 1 [14] The operator − for B is a kernel contraction if and only if it
satisfies the following postulates:

[success] If α /∈ Cn(∅), then α /∈ Cn(B − α).
[inclusion] B − α ⊆ B.
[core-retainment] If β ∈ B and β /∈ B − α, then there is a set B′ such that

B′ ⊆ B and α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β}).
[uniformity] If it holds that for all subsets B′ of B that α ∈ Cn(B′) if and

only if β ∈ Cn(B′), then B − α = B − β.
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The first postulate says that the result of a contraction should not imply
the contracted sentence. Inclusion says that the new belief base should not con-
tain anything that was not already in the original set. The postulate of core-
retainment tries to capture the intuition that if a sentence has to be removed,
then this sentence is relevant to imply α. The last postulate says that if every
subset of B that implies α implies β then contracting α should be the same as
contracting β and vice-versa.

The representation theorem for this construction was shown in [8] to hold for
any compact and monotonic logic. So it holds for a large variety of description
logics, in particular for SHOIN and SHIFF.

In AGM theory and in most works deriving from it, revision operators (*)
are related to contraction operators (-) via the Levi identity:

B ∗ α = (B − ¬α) + α
Hansson [15] has proposed an operation of external revision using the reversed

Levi identity:
B ∗ α = (B + α)− ¬α
There are several possibilities for constructing an external revision operator.

We will present here one based on kernel contraction.

Definition 4 Let - be a kernel contraction operator. The operator of external
kernel revision is defined by:

B ∗ α = (B + α)− ¬α

Hansson has shown that:

Theorem 2 [8] The operator ∗ for B is an external kernel revision if and only
if it satisfies the following postulates:

[non-contradiction] If ¬α /∈ Cn(∅) then ¬α /∈ Cn(B ∗ α)
[inclusion] B ∗ α ⊆ B + α
[core-retainment] If β ∈ B and β /∈ B ∗ α, then there is some B′ such that

B′ ⊆ B ∪ {α} and ¬α /∈ Cn(B′), but ¬α ∈ Cn(B′ ∪ {β})
[success] α ∈ B ∗ α
[weak-uniformity] If α, β ∈ B and for all B′ ⊆ B we have that ¬α ∈ Cn(B′)

if and only if ¬β ∈ Cn(B′) then B ∩ (B ∗ α) = B ∩ (B ∗ β).
[pre-expansion] B + α ∗ α = B ∗ α

In [8] it was shown that the theorem above holds for any monotonic and
compact logic satisfying a property called α-local non-contravention:

Definition 5 A consequence operator Cn satisfies α-local non-contravention if
and only if, if ¬α ∈ Cn(B ∪ {α}), then ¬α ∈ Cn(B).

This characterization of revision, as well as the construction, relies on the
existence of negation in the logic. This is not the case for several description
logics. In particular, SHIFF and SHOIN do not admit negation of all kinds of
axioms.

We can re-write the postulates of external kernel revision in a way such they
do not use negation:
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[weak consistency] If ⊥ /∈ Cn(α) then ⊥ /∈ Cn(B ∗ α)
[inclusion] B ∗ α ⊆ B + α
[core-retainment] If β ∈ B and β /∈ B ∗ α, then there is some B′ such that

B′ ⊆ B and ⊥ /∈ Cn(B′ ∪ {α}), but ⊥ ∈ Cn(B′ ∪ {β, α})
[success] α ∈ B ∗ α
[weak uniformity] If α, β ∈ B and for all B′ ⊆ B we have that ⊥ ∈ Cn(B′ ∪
{α}) if and only if ⊥ ∈ Cn(B′ ∪ {β}) then B ∩ (B ∗ α) = B ∩ (B ∗ β).

[pre-expansion] B + α ∗ α = B ∗ α

It is not difficult to see that in logics where negation has a classical behavior
(i.e., satisfies explosiveness1 and α-local-non-contravention), this set of postu-
lates is equivalent to the previous one.

Another idea would be to define the negation of an axiom in an abstract
way and then try to find the negation of every axiom that could be built. This
approach was followed in [16], but for belief sets. The authors define consistency
negation of an axiom in a generic way. Their goal was to find a definition of
negation that: exists in (almost) every DL, the definition coincides with classical
negation if applied to classical logic and checking if an axiom is the negation
of another should be decidable. We could try to adapt this approach for belief
bases, but this will be left for a future work. In this work we will follow a different
approach.

In the next section, we propose a new construction for revision, together with
an axiomatic characterization, that does not depend directly on the notion of
negation.

3 Revision without negation

In the last Section, we have seen constructions for belief base operators of con-
traction and revision which are characterized by sets of postulates. We have seen
that the constructions and postulates can be used with a large class of logics.
Usually revision is built using contraction and the Levi identity, or its reverse.
This is not easy when we are dealing with description logics. In order to use
the Levi identity we have to add an axiom and then contract by the negation of
it. The difficulty arises when we try to find the negation of an axiom. In many
description logics the negation of some axioms is not defined. This problem was
already mentioned in [10] and [5].

Our construction is based on an alternative operation proposed by Hansson,
semi-revision [17]. A usual operator of revision guarantees, through the success
postulate, that after the revision a given formula is added to the belief base. An
operator of semi-revision does not satisfy the success postulate. So the result of
a semi-revision is always a consistent set such that the formula by which we have
revised does not necessarily belong to it.

1 A consequence operator Cn satisfies explosiveness if and only if, for all α and β,
β ∈ Cn({α,¬α}).
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First a particular construction for an operator of semi-revision will be pre-
sented with the associated set of postulates and representation theorem. Then
this operator will be adapted to an operator of belief base revision, i.e., an op-
erator that satisfies the success postulate.

The semi-revision operator is built by adding the formula and then contract-
ing the inconsistency:

Definition 6 [17] Let B be a belief base, α a formula and − a kernel contraction
for B. The kernel semi-revision of B by α is defined as:

B?α = (B + α)−⊥

Theorem 3 [17]
The operator ? for B is a kernel semi-revision if and only if it satisfies the

following postulates:

[consistency] ⊥ /∈ Cn(B?α)
[inclusion] B?α ⊆ B + α
[core-retainment] If β ∈ B and β /∈ B?α then there is at least one B′ such

that B′ ⊆ B + α and ⊥ /∈ Cn(B′), but ⊥ ∈ Cn(B′ ∪ {β})
[pre-expansion] (B + α)?α = B?α
[internal exchange] If α, β ∈ B then B?α = B?β

It has been shown in [8] that the representation theorem above holds for any
compact and monotonic logic such that ⊥ /∈ Cn(∅).

In an operation of semi-revision, if the new formula is involved in an incon-
sistency, it may be given up when contracting by ⊥. In order to transform it in
a revision (satisfying the success postulate), we need to find a way to “protect”
the new formula and make sure it stays in the revised belief base.

We present two different constructions for revision without negation, both
based on semi-revision, with different properties. The first one assures that the
revised base is always consistent, but success does not hold in case the formula to
be added is inconsistent. In the second construction, success always holds, but if
the formula to be added is inconsistent, the resulting revised base is inconsistent.
This is more in line with the AGM paradigm.

3.1 Weak success

For the first construction, we have to restrict the incision functions that can be
used:

Definition 7 An incision function that protects consistent inputs is a function
σ such that:

– σ(α, B ⊥⊥⊥) ⊆
⋃

(B ⊥⊥⊥)
– If ∅ 6= X ∈ B ⊥⊥⊥, then X ∩ σ(α, B ⊥⊥⊥) 6= ∅
– If ⊥ 6∈ Cn({α}), then α /∈ σ(α, B ⊥⊥⊥)
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The idea is that the incision function preserves α whenever it is possible, i.e.,
whenever α is not a contradiction by itself. If α is consistent, then there is no
set in B ⊥⊥⊥ containing only α, so it is always possible to choose other elements
for the incision.

We can now define a semi-revision that protects consistent inputs:

Definition 8 A kernel semi-revision with weak success is defined as:
B?σα = (B + α) \ σ(α, B + α ⊥⊥⊥)

A semi-revision protecting the input adds a formula and then removes all
the inconsistencies, like the usual semi-revision, but it never chooses α to be
removed, unless α is inconsistent.

Theorem 4 Let Cn be a compact and monotonic consequence operator. The
operator ? for B is a kernel semi-revision with weak success if and only if it
satisfies the following postulates:

[weak success] If ⊥ 6∈ Cn({α}), then α ∈ B?α
[consistency] ⊥ /∈ Cn(B?α)
[inclusion] B?α ⊆ B + α
[core-retainment] If β ∈ B and β /∈ B?α then there is at least one B′ such

that B′ ⊆ B + α and ⊥ /∈ Cn(B′), but ⊥ ∈ Cn(B′ ∪ {β})
[pre-expansion] (B + α)?α = B?α

Proof: (i) construction ⇒ postulates:
Let ?σ be an operator of kernel semi-revision with weak success based on an

incision function that almost protects the input, σ. It follows directly from the
construction that inclusion and pre-expansion are satisfied. From the definition
of an incision function that almost protects the input, it follows that ?σ satisfies
weak success and consistency. Finally, for core-retainment, let β ∈ B \ B?σα.
Then by construction β ∈ σ(α, (B ∪ {α}) ⊥⊥⊥). This means that for some set
X ∈ (B ∪ {α}) ⊥⊥⊥, β ∈ X. Let B′ = X \ {β}. We have B′ ⊆ B ∪ {α},
⊥ 6∈ Cn(B′) and ⊥ ∈ Cn(B′ ∪ {β}).

(ii) postulates ⇒ construction: Let ? be an operator satisfying the postulates
above and let σ be such that for every formula α:

σ(α, B ⊥⊥⊥) = B \ (B?α)
We have to show (1) that σ is an incision function that almost protects the

input for the given domain and (2) that B?α = B?σα.
(1) We have to show that the three conditions of Definition 7 are satisfied.

For the first condition, let β ∈ σ(α, B ⊥⊥⊥). Then it holds that β ∈ B \ (B?α)
and it follows from core-retainment that there is some B′ ⊆ B + α such that
⊥ 6∈ Cn(B′) and ⊥ ∈ Cn(B′ ∪ {β}). It follows that there is some subset B′′ of
B′ such that B′′ ∪ {β} ∈ B ⊥⊥⊥ and hence, β ∈

⋃
(B ⊥⊥⊥).

For the second condition, let ∅ 6= X ∈ B ⊥⊥⊥. Suppose that X∩σ(α, B ⊥⊥⊥) =
∅. Then X ⊆ B?α. Since ⊥ ∈ Cn(X), it follows from monotony that ⊥ ∈
Cn(B?α), contrary to consistency. This contradiction is sufficient to prove that
X ∩ σ(α, B ⊥⊥⊥) 6= ∅.
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For the third condition, suppose ⊥ 6∈ Cn({α}). By weak success, α ∈ B?α,
and hence, α /∈ σ(α, B ⊥⊥⊥).

(2) By definition, σ(α, (B ∪ {α}) ⊥⊥⊥) = (B ∪ {α}) \ ((B ∪ {α})?α) = (B ∪
{α}) \ B?α (pre-expansion). Hence, B?σα = (B ∪ {α}) \ σ((B ∪ {α}) ⊥⊥⊥) =
(B ∪ {α}) \ ((B ∪ {α}) \B?α) = B?α (inclusion). �

3.2 Success

We now define an operation of belief base revision that does not rely on negation
and has the property of success.

Definition 9 An incision function that protects the input is a function σ such
that:

– σ(α, B ⊥⊥⊥) ⊆
⋃

(B ⊥⊥⊥)
– If ⊥ 6∈ Cn({α}) and ∅ 6= X ∈ B ⊥⊥α, then X ∩ σ(α, B ⊥⊥⊥) 6= ∅
– α /∈ σ(α, B ⊥⊥⊥)

The idea here is that the incision function always preserves α. In the case
where α is a contradiction, not enough will be chosen to make the resulting
belief base consistent. In particular, when α is inconsistent we could have an
incision function that protects α that returns the empty set and in this case,
B ∗ α = B + α.

Definition 10 A kernel revision without negation is defined as:
B ∗σ α = (B + α) \ σ(α, B + α ⊥⊥⊥)

Theorem 5 Let Cn be a compact and monotonic consequence operator. The
operator ∗ for B is a kernel revision without negation if and only if it satisfies
the following postulates:

[success] α ∈ B ∗ α
[weak consistency] If ⊥ 6∈ Cn({α}), then ⊥ /∈ Cn(B ∗ α)
[inclusion] B ∗ α ⊆ B + α
[core-retainment] If β ∈ B and β /∈ B ∗ α then there is at least one B′ such

that B′ ⊆ B + α and ⊥ /∈ Cn(B′), but ⊥ ∈ Cn(B′ ∪ {β})
[pre-expansion] (B + α) ∗ α = B ∗ α

Proof: (i) construction ⇒ postulates:
Let ∗σ be an operator of kernel revision without negation based on an incision

function σ that protects the input. It follows directly from the construction
that inclusion and pre-expansion are satisfied. From the definition of an incision
function that protects the input it follows that ∗σ satisfies success and weak
consistency. Finally, for core-retainment, let β ∈ B\B∗σα. Then by construction
β ∈ σ(α, (B∪{α}) ⊥⊥⊥). This means that for some set X ∈ (B∪{α}) ⊥⊥⊥, β ∈
X. Let B′ = X\{β}. We have B′ ⊆ B∪{α}, ⊥ 6∈ Cn(B′) and ⊥ ∈ Cn(B′∪{β}).
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(ii) postulates ⇒ construction: Let ∗ be an operator satisfying the postulates
above and let σ be such that for every formula α:

σ(α, B ⊥⊥⊥) = B \ (B ∗ α)
We have to show (1) that σ is an incision function that protects the input

for the given domain and (2) that B ∗ α = B ∗σ α.
(1) We have to show that the three conditions of Definition 9 are satisfied.

For the first condition, let β ∈ σ(α, B ⊥⊥⊥). Then it holds that β ∈ B \ (B ∗ α)
and it follows from core-retainment that there is some B′ ⊆ B + α such that
⊥ 6∈ Cn(B′) and ⊥ ∈ Cn(B′ ∪ {β}). It follows that there is some subset B′′ of
B′ such that B′′ ∪ {β} ∈ B ⊥⊥⊥ and hence, β ∈

⋃
(B ⊥⊥⊥).

For the second condition, let ⊥ 6∈ Cn({α}) and ∅ 6= X ∈ B ⊥⊥⊥. Suppose
that X ∩ σ(α, B ⊥⊥⊥) = ∅. Then X ⊆ B ∗ α. Since ⊥ ∈ Cn(X), it follows from
monotony that ⊥ ∈ Cn(B ∗α), contrary to weak consistency. This contradiction
is sufficient to prove that X ∩ σ(α, B ⊥⊥⊥) 6= ∅.

For the third condition, it suffices to note that by success, α ∈ B ∗ α, and
hence, α /∈ σ(α, B ⊥⊥⊥).

(2) By definition, σ(α, (B ∪ {α}) ⊥⊥⊥) = (B ∪ {α}) \ ((B ∪ {α}) ∗ α) =
(B∪{α})\B∗α (pre-expansion). Hence, B∗σα = (B∪{α})\σ((B∪{α}) ⊥⊥⊥) =
(B ∪ {α}) \ ((B ∪ {α}) \B ∗ α) = B ∗ α (inclusion). �

4 Comparing the operations

We have defined two different operations that can be used to revise ontologies in
description logics. In this section we compare them to other proposals according
to their properties.

In [18], the authors proposed the use of semi-revision for revising ontologies.
The problem with semi-revision is that there is no guaranty that the new formula
will be in the revised ontology, or even implied by it. We can see the operations
described in the previous section as a link between semi-revision and revision.

Starting from semi-revision, when we switch to the operation defined in Sec-
tion 3.1, we get some guaranty of success, through the weak success postulate.
Whenever the new formula is consistent, it will be incorporated to the belief
base. The price we pay for weak success is the loss of internal exchange. This
means that, even if α and β are elements of B, the result of revising by them
may be different.

From the operation defined in Section 3.1 to the one defined in Section 3.2,
we get the success postulate, but loose unconditional consistency. This means
that the resulting revised base may end up being inconsistent, but this only
happens if the formula being added is inconsistent. This operation is closer to
AGM-style intuitions. What is missing from Hansson’s external revision is some
form of uniformity. This is due to the syntactical nature of “protecting” α. One
could think about other definitions of protection that would take into account
logically equivalent formulas, or set of formulas, but this is left for future work.
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In the rest of this section, we present a short example to illustrate the use of
the revision operations. The example is described in a simple description logic.

Let us consider the following knowledge base B about Tweety:

Bird v Fly (1)
Bird(Tw) (2)

Peng v ¬Fly (3)
¬Peng(Tw) (4)

The base contains thus information about birds (that they fly), penguins
(that they do not fly) and an individual, Tweety, that is a bird and not a penguin.

Now assume that we receive information that we were wrong and that Tweety
is a penguin, i.e., we want to add a new formula α to B:

α = Peng(Tw)

4.1 Semi-Revision

In order to find the resulting knowledge base B?α, we first have to compute the
kernel set B ∪ {α} ⊥⊥⊥.

B ∪ {α} ⊥⊥⊥ = {{¬Peng(Tw), P eng(Tw)},
{Bird v Fly, Bird(Tw), P eng v ¬Fly, Peng(Tw)}}

There are several different possibilities for an incision function, we could have,
for example:

σ(B ∪ {α} ⊥⊥⊥) = {Peng(Tw)}

This would mean that the new information is not accepted and the resulting
base is equal to the original one:

B?α = B + α \ {α}

4.2 Semi-revision with weak success

In this case, we need an incision function that almost protects α, i.e., if α is
consistent, it is never chosen. Since Peng(Tw) is consistent, the incision function
has to choose at least one element different from α of each set in B ∪ {α} ⊥⊥⊥.
One possible choice is:

σ(B ∪ {α} ⊥⊥⊥) = {¬Peng(Tw), Bird v Fly}

For this example the resulting set is:

K?σα = {Bird(Tw), P eng v ¬Fly, Peng(Tw)}
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4.3 Revision without negation

This operation only differs from semi-revision with weak success in the case
where the new formula is inconsistent. Since in this example, the formula being
added is consistent, an incision function that almost protects α is also an incision
function that protects α and the result may be the same with the two operations.

4.4 External kernel revision

For external kernel revision, we have to compute the kernel set B ∪ {α} ⊥⊥¬α:

B ∪ {α} ⊥⊥¬α = {{¬Peng(Tw)},
{Bird v Fly, Bird(Tw), P eng v ¬Fly}}

We could obtain the same result as in the two previous operations, by taking
an incision function such that:

σ(B ∪ {α} ⊥⊥¬α) = {¬Peng(Tw), Bird v Fly}

Note however, that this operation and revision without negation are not
equivalent, the postulate of core-retainment is not identical in both cases. In
fact we can show that if an operation satisfies the core-retainment of external
kernel revision then it satisfies the core-retainment of revision without negation,
but this is not true in the other way. Intuitively in the second any formula that
is responsible for the deriving the inconsistency can be removed, but in the first
one only the ones that are responsible for deriving ¬α can be removed.

Moreover, this operation depends on the existence of negation: if we want
to revise by Peng v Bird, for example, in several description logics we cannot
form the negation of this axiom and the traditional operation of revision cannot
be used.

5 Conclusions and Future Work

In [8], several operations of belief base change were generalized and shown to hold
for a wide range of logics. The operations for contraction can be used with any
compact and monotonic logic, and are thus applicable to ontologies represented
in most description logics. Revision, on the other side, is usually defined based
on contraction using negation. In several description logics, there is no negation
for all kinds of axioms.

In this paper we have proposed two new operations of belief base revision,
characterized by sets of postulates and constructions. The idea was to get rid of
the dependence on negation.

In [16], the authors propose two different possible definitions for negation
in ontologies. Future works include testing this notions of negation with the
(reversed) Levi identity in order to see whether we get a meaningful revision
operator.
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We also plan to implement and test the ideas presented here. When trying
to implement the operations defined in the previous sections, we are confronted
with the problem of finding the kernel sets, which is the computational bottleneck
of these constructions. Fortunately this problem has already been addressed for
description logics. Description logic systems typically offer a set of inference
services, such as: consistency checking, classification and concept subsumption.
In [19] the authors proposed that the systems should provide debugging services.
One of these debugging services was called axiom pinpointing. Axiom pinpointing
is an inference service that given a sentence provides the set of all justifications
for this sentence. By justification the author mean the smallest sets of formulas
from the knowledge base (KB) that imply the sentence. In other words, axiom
pinpointing returns the kernel of the KB given a sentence.

In [19] the authors show two ways of computing axiom pinpointing. One way
was called black-box because it is reasoner-independent, the reasoner is used as
an oracle that tells if a concept is satisfiable. The second way was called glass-
box because it is reasoner-dependent. Though the first way is more general, the
second way is much more efficient. The glass-box algorithm showed in [19] was
based on the tableaux decision procedure for concept satisfiability in SHOIN.

Both services return only one justification for the sentence (one element of
the kernel). To find all justifications, an algorithm based on Reiter’s Hitting Set
Tree Algorithm [20] could be used, which would also find the possible incision
functions. The use of Reiter’s algorithm for implementing belief change operators
was suggested in [21] and used in [18].
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Abstract. Inconsistency handling is a central problem in many knowl-
edge representation fields, such as belief revision, belief merging. Many
approaches have been proposed to handle inconsistency in ontologies. In
this paper, we propose a stratification-based approach for inconsistency
handling in description logics (DLs), a family of ontology languages. This
approach consists of two steps. In the first step, we obtain a preference
relation on the axioms in the DL knowledge base using an algorithm.
Then two existing approaches in first-order logic are adapted to resolve
conflicting information in the stratified DL knowledge base.

1 Introduction

Ontologies play a crucial role for the success of the Semantic Web [12]. There
are many representation languages for ontologies, such as description logics (or
DLs for short) [4]. Inconsistency may occur because of several reasons, such
as modelling errors, migration or merging ontologies, and ontology evolution.
Current DL reasoners, such as RACER [14], can detect logical inconsistency.
But they only provide lists of unsatisfiable classes and the process of resolving
inconsistency is left to the user or ontology engineers. The need to improve DL
reasoners to reasoning with inconsistency is becoming urgent to make them more
applicable. Many approaches were proposed to handle inconsistency in ontologies
based on existing techniques for inconsistency management in traditional logics,
such as propositional logic and nonmonotonic logics [24, 21, 18].

It is well-known that priority or preference plays an important role in in-
consistency handling [2, 7, 20]. In [2], the authors introduced priority to default
terminological logic such that more specific defaults are preferred to more gen-
eral ones. When conflicts occur in reasoning with defaults, defaults which are
more specific should be applied before more general ones. In [20], an algorithm,
called refined conjunctive maxi-adjustment (RCMA for short) was proposed to
weaken conflicting information in a stratified DL knowledge base and some con-
sistent DL knowledge bases were obtained. To weaken a terminological axiom,
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they introduced a DL expression, called cardinality restrictions on concepts [3].
In [26], a revision-based approach was given to resolve inconsistency in a strat-
ified DL knowledge base. Instead of using cardinality restrictions on concepts,
this approach weakens DL axioms (both terminological axioms and assertional
axioms) by removing those instances which are responsible for inconsistency.

In this paper, we propose a stratification-based approach for inconsistency
handling in DLs. First, we give an algorithm to obtain a preference relation on
the axioms of an inconsistent DL knowledge base. The knowledge base associated
with this preference relation is a stratified DL knowledge base. We then apply two
existing approaches in first-order logic to resolve conflicting information in the
stratified DL knowledge bases. The first approach is called a possibilistic logic
approach and the second approach is called a lexicographic-based approach. We
analyze the pros and cons of both approaches.

This paper is organized as follows. Section 2 gives a brief review of description
logics. In Section 3, we provide background knowledge on stratified knowledge
bases and two inconsistency handling approaches. An algorithm to stratify a DL
knowledge base is proposed in Section 4. We then adapt the existing inconsis-
tency handling approaches to DLs in Section 5. Before conclusion, we have a
brief discussion on related work.

2 Description logics

In this section, we introduce some basic notions of Description Logics (DLs),
a family of well-known knowledge representation formalisms [4]. We consider
ALC [25], which is a simple yet relatively expressive DL. Let NC and NR be
pairwise disjoint and countably infinite sets of concept names and role names
respectively. We use the letters A and B for concept names, the letter R for
role names, and the letters C and D for concepts. The set of ALC concepts is
the smallest set such that: (1) every concept name is a concept; (2) if C and D
are concepts, R is a role name, then the following expressions are also concepts:
¬C (full negation), CuD (concept conjunction), CtD (concept disjunction),
∀R.C (value restriction on role names) and ∃R.C (existential restriction on role
names). An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain
of I, and a function ·I which maps every concept C to a subset CI of ∆I and
every role R to a subset RI of ∆I ×∆I such that, for all concepts C, D, role
R, the following properties are satisfied:

(1) (¬C)I =∆I \ CI ,
(2) (CuD)I=CI∩DI , (CtD)I=CI∪DI ,
(3) (∃R.C)I={x|∃ ys.t.(x, y)∈RI and y∈CI},
(4) (∀R.C)I={x|∀y(x, y)∈RI implies y∈CI}.
A DL knowledge base consists of two components, the terminological box

(TBox) T and the assertional box (ABox) A. A TBox is a finite set of termino-
logical axioms of the form CvD (general concept inclusion or GCI for short) or
C≡D (equalities), where C and D are two (possibly complex) ALC concepts.
An interpretation I satisfies a GCI CvD iff CI⊆DI , and it satisfies an equality
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C≡D iff CI = DI . It is clear that C≡D can be seen as an abbreviation for the
two GCIs CvD and DvC. Therefore, we take a TBox to contain only GCIs. We
can also formulate statements about individuals. We denote individual names as
a, b, c. A concept (role) assertion axiom has the form C(a) (R(a, b)), where C is
a concept description, R is a role name, and a, b are individual names. To give a
semantics to ABoxs, we need to extend interpretations to individual names. For
each individual name a, ·I maps it to an element aI ∈ ∆I . An interpretation
I satisfies a concept axiom C(a) iff aI∈CI , it satisfies a role axiom R(a, b) iff
(aI , bI)∈RI . An ABox contains a finite set of concept and role axioms. A DL
knowledge base K consists of a TBox and an ABox, i.e. it is a set of GCIs and
assertion axioms. An interpretation I is a model of a DL (TBox or ABox) axiom
iff it satisfies this axiom, and it is a model of a DL knowledge base K if it satisfies
every axiom in K. In the following, we use M(φ) (or M(K)) to denote the set of
models of an axiom φ (or DL knowledge base K). K is consistent iff M(K)6=∅.
Let K be an inconsistent DL knowledge base. A set K ′⊆K is a conflict 1 of K
if K ′ is inconsistent, and any sub-knowledge base K ′′⊂K ′ is consistent. Given a
DL knowledge base K and a DL axiom φ, we say K entails φ, denoted as K |= φ,
iff M(K)⊆M(φ).

3 Stratified Knowledge Bases

In this section, we first provide some background knowledge on stratified knowl-
edge bases. Then some inconsistency handling approaches in classical logic are
introduced.

3.1 Stratified knowledge base

We consider a first order language L determined by a set of variable symbols and
a set of predicate and function symbols. 0-ary functions are constants. We use
uppercase letters like P and R for predicate symbols, lowercase letters like a, b, c
for constant symbols, and x, y for variable symbols. The classical consequence
relation is denoted as `. We denote formulae in L by φ, ψ, γ,... A classical knowl-
edge base K is a finite set of first-order formulae. K is inconsistent iff K ` φ and
K ` ¬φ for some formula φ.

A stratified knowledge base, sometimes also called prioritized knowledge base
[5], is a set K of (finite) propositional formulas together with a total preorder ≤
on K (a preorder is a transitive and reflexive relation, and ≤ is a total preorder
if either φ≤ψ or ψ ≤ φ holds for any φ, ψ∈K)2. Intuitively, if φ ≤ ψ, then φ is
considered to be at least less or equally important than ψ. K can be equivalently
defined as a sequence K = (S1, ..., Sn), such that formulas in Si have the same
1 The notion of conflict is different from the notion of minimal unsatisfiability-

preserving sub-TBox of a DL knowledge base defined in [24] in that it concerns
inconsistency instead of incoherence.

2 For simplicity, we use K to denote a stratified knowledge base and ignore the total
preorder ≤.
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level of priority and have higher priority than the ones in Sj where j < i. Each
subset Si is called a stratum of K and i the priority level of each formula of Si.
Therefore, the higher the stratum, the higher the priority level of a formula in
it. A subbase A of K is also stratified, that is, A = (A1, ..., An) such that Ai⊆Si,
i = 1, ..., n.

3.2 Reasoning with inconsistent stratified knowledge bases

Many approaches have been introduced to reasoning with inconsistent stratified
knowledge bases [5, 7–9]. We consider two approaches, one is the possibilistic
logic approach [9] and the other is the adapted lexicographic-based approach
[7].

Possibilistic logic approach Possibilistic logic inference [9] is based on a suit-
able consistent stratified subbase of K. Suppose K = {S1, ..., Sn}. Let Inc(K) =
max{i : Si ∪ ... ∪ Sn is inconsistent} be the inconsistency degree of K. There
are two possibilistic consequence relations.

Definition 1. Let K = {S1, ..., Sn} be a stratified knowledge base. A formula φ
is said to be a possibilistic consequence of K, denoted by K `π φ if and only if
SInc(K)+1 ∪ ... ∪ Sn ` φ.

A formula φ is a possibilistic consequence ofK if and only if it can inferred by the
set of formulas whose priority levels are greater than Inc(K), the inconsistency
degree of K.

Definition 2. Let K = {S1, ..., Sn} be a stratified knowledge base. A formula φ
is said to be a i-consequence of K, denoted by K `i φ if and only if the following
conditions are satisfied:

(1) i>Inc(K)
(2) Si ∪ ... ∪ Sn ` φ
(3) for any j > i, Sj ∪ ... ∪ Sn 6`φ.

In Definition 2, Condition (1) ensures that the i-consequence is not trivial. Con-
dition (2) says that φ can be inferred from the set of formulas whose priority
levels are greater than i and Condition (3) means that i is the highest priority
level which can be attached to φ.

To check whether a formula φ is a possibilistic consequence or an i-consequence
of K, we first need to compute the inconsistency degree of K, which is a hard
task.

Proposition 1. [19] Computing Inc(K) requires dlog2ne satisfiability checks,
where n is the number of different strata of K.

According to Proposition 1, it requires dlog2ne+1 satisfiability checks to decide
whether a formula φ is a possibilistic consequence of K or not.
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Adapted lexicographic-based approach In [7], a stratified first-order logic
approach for handling inconsistency was proposed to adapt the lexicographic-
based approach in propositional logic [5]. When a formula of the form ∀xφ(x)
is involved in a conflict, then it is simply deleted by the lexicographic-based
approach to restore consistency. In contrast, the adapted lexicographic-based
approach weakens the conflicting formula by dropping only instances of this
formula which are responsible of a conflict. For example, if a formula of the
form ∀xφ(x) is conflicting for x = a, then this formula is weakened as ∀x¬(x =
a)→φ(x). Let us explain the approach in more detail.

Let φ be a formula which is universally quantified with a set of variable
X = {x1, ..., xn}. Let I = {i1, ..., in} be such that ik (k = 1, ..., n) are in-
stances of xk respectively. Let us denote the formula ¬(

∧
k=1,...,n(xk = ik)) as

Different(I,X). The following definitions can be found in [7].

Definition 3. Let φ be a first-order formula which is universally quantified with
a set of variable X = {x1, ..., xn} where n is finite. φweak is called a weakened
formula of φ if it has the form: A→φ, where A = {Different(Ij , X) : j =
1, ...,m} (or A can be seen as the conjunction of formulas in it). The degree
of a weakened formula φweak is defined as degree(φweak) = |A|, i.e., it is the
cardinality of A.

The degree of a weakened formula is used to count the number of instances that
cannot be applied, i.e. instances that are ignored.

The weakened base of a first-order knowledge base is defined as follows.

Definition 4. Let K = {S1, ..., Sn} be a stratified knowledge base, where Sn

contains formulas that are completely certain (that is, they cannot be deleted
or weakened if they are involved in a conflict). A first-order knowledge base
K ′ = {S′1, ..., S′n} is said to be a weakened base of K if 1) K ′ is consistent, and
2) K ′ is only obtained by replacing some formula φ of {S1, ..., Sn−1} by their
weakened counterpart φweak.

The degree of a stratum S′i of a weakened base K ′ is defined as: degree(S′i) =
Σφweak∈S′

i
degree(φweak). We then can define the ranking between weakened

bases as follows.

Definition 5. Let K ′ and K ′′ be two weakened bases of K. K ′ is said to be
lexicographically preferred to K ′′, denoted by K ′ >lex K ′′, if ∃i, 1≤i≤n such
that i) degree(S′i) < degree(S′′i ), and ii) ∀j > i, degree(S′j) = degree(S′′j ).
K ′ is said to be lexicographically preferred weakened base of K if there is no
consistent weakened base K ′′ such that K ′′>lexK

′. A formula ψ is said to be a lex
conclusion of K, denoted K `lex ψ, if ψ is a consequence of all lexicographically
preferred weakened bases of K.

4 Stratification of DL Knowledge Bases

In this section, we define an algorithm transform an inconsistent DL knowledge
base into a stratified DL knowledge base, i.e. each element of the base is as-
signed a rank, based on the weakening-based revision operator. More precisely,
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a stratified DL knowledge base is of the form K = S1∪...∪Sn, where for each
i∈{1, ..., n}, Si is a finite multi-set of DL sentences. Sentences in each stratum
Si have the same rank or reliability, while sentences contained in Sj such that
j > i are seen as more reliable.

There are many ways to obtain a stratified DL knowledge base. For example,
the stratification can be given by an expert or by ontology learning [15]. The
stratification can also be computed automatically. In this section, we propose an
algorithm to stratify a DL knowledge base. We assume that a TBox T consists
of two adjoint subsets: a set of completely sure terminology axioms Tc, i.e., ax-
ioms which will not be involved in any conflict, and a set of default terminology
axioms Td. We also assume that the information in an ABox is completely sure.
The knowledge base is called a default DL knowledge base. That is, a default DL
knowledge base K is already stratified as K = {Td, A∪Tc}, where Tc contains
completely sure terminology axioms, A contains assertion axioms, and Td con-
tains default terminology axioms. This assumption is often adopted in default
theories [1, 7, 23]. In default theories, specificity is a commonly used criterion for
ranking a set of default rules [22, 23, 2]. Many methods have been proposed to
compute specificity in default theories. In [22], Pearl gives a method to rank
a set of default rules such that a more specific default is preferred to a more
general one. This method is then revised and applied to stratify a knowledge
base consisting of a set of default and hard rules in [6]. In this section, we pro-
pose a stratification algorithm based on the stratification method in [6]. Given
a set of terminology axioms T = Tc ∪ Td, where Tc contains completely sure
terminology axioms, and Td contains default terminology axioms, we say that a
default terminology axiom C1vD1 is more specific than another one C2 v D2

iff T |= C1vC2 but T 6|= C2 v C1. Note that the ordering relation defined by
specificity is not necessarily a total preorder.
Stratification Algorithm
Input: Default terminology axioms base Td, completely sure terminology axioms
base Tc

Output: Stratified default terminology axiom base Ts

begin
m=1;
while Td 6= ∅ do
begin
Sm = {CivDi|Ci v Di∈Td, and Tc ∪ Td ∪ {Ci(a)} is consistent, a is a

new instance};
If Sm = ∅ then stop (inconsistent terminology axioms).
Td = Td \ Sm; m = m+ 1;

end begin
end while
Return Ts = {S1, S2, ..., Sm}.

end
In the stratification algorithm, when there exists m such that Sm is empty,

then we say that Td is inconsistent with Tc and we end the algorithm (because all
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the other element in Td are blocked to be stratified). In the following, we assume
that Tc is always consistent with Td. Given a default DL knowledge base K =
{Td, A∪Tc}, suppose Td is stratified as Ts = {S1, ..., Sm} using the stratification
algorithm, we get a stratified DL knowledge base K ′ = {S1, ..., Sm+1}, where
Sm+1 = A∪Tc.

Let us look at an example.

Example 1. Let K = {Td, A∪Tc}, where Td = {birdvflies, penguinv¬flies},
Tc = {penguinvbird} and A = {penguin(Cheeky)}. We now apply the strat-
ification algorithm to stratify Td. First, since Td∪Tc ∪ {bird(a)} is consistent
and Td ∪ Tc ∪ {penguin(a)} is inconsistent, where a is an arbitrary bird name,
we have S1 = {birdvflies}. There is only one element left in Td, so S2 =
{penguinv¬flies}. That is, Td is stratified as Ts = {S1, S2}. Note that penguin
v¬flies is more specific than birdvflies because we have penguinvbird in Tc.
K is then further stratified as K ′ = {S1, S2, A∪Tc}.

In Example 1, the ranking obtained by the stratification algorithm agrees with
the notion of specificity. More generally, suppose CivDi is a terminology axiom
in Td such that Td∪Tc∪{Ci(a)} is inconsistent. Then the assertion Ci(a) triggers
a more general default terminology axiom in Td which is responsible for the
inconsistency. Therefore, the higher the rank is, the more specific the default
terminology axiom is.

5 Inconsistency Handling in Stratified DL Knowledge
Bases

5.1 Possibilistic logic approach

We apply the possibilistic logic approach to deal with inconsistency in a stratified
DL knowledge base K. We have the following two definitions.

Definition 6. Let K = {S1, ..., Sn} be a stratified DL knowledge base. Let
Inc(K) = max{i : Si ∪ ... ∪ Sn is inconsistent} be the inconsistency degree
of K. For any DL statement φ, φ is a possibilistic consequence of K, denoted
K |=π φ, if and only if, SInc(K)+1 ∪ ... ∪ Sn |=π φ.

Definition 7. Let K = {S1, ..., Sn} be a stratified DL knowledge base. Let
Inc(K) be the inconsistency degree of K. For any DL statement φ, φ is a i-
consequence of K, denoted K |=i φ, if and only if the following conditions are
satisfied:

(1) i>Inc(K)
(2) Si ∪ ... ∪ Sn |= φ

(3) for any j > i, Sj ∪ ... ∪ Sn 6|=φ.
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By Definition 6 and Definition 7, both the possibilistic consequence and the i-
consequence relation are independent of DL reasoners, i.e., we can treat the DL
reasoner as a black box and use it to check knowledge base consistency. Another
advantage of the possibilistic approaches is that they are independent of DL
languages, although we restrict our discussion to DL ALC in this paper.

The main task of possibilistic inferences defined above is to compute the
inconsistency degree of K, which requires dlog2ne DL consistency checks, where
n is the number of different strata of K.

Let us go back to Example 1.

Example 2. (Continuing Example 1) Suppose thatK is stratified asK ′ = {S1, S2,
S3}, where S1 = {birdvflies}, S2 = {penguinv¬flies} and S3 = {penguin
(Cheeky), penguinvbird}. Let us check if Cheeky can fly. First, we compute the
inconsistency degree of K ′. Since ∪3

i=1Si is inconsistent and S2∪S3 is consistent,
Inc(K ′) = 1. It is clear that S2∪S3 |=π ¬flies(Cheeky). So we can conclude that
Cheeky cannot fly. Furthermore, we can conclude that K ′ |=2 ¬flies(Cheeky),
that is, the priority level of the proposition that Cheeky cannot fly is two.

Possibilistic logic approach simply blocks a default terminology axiom if it
is responsible for the conflict and its priority level is not larger than the in-
consistency degree. This may result in unnecessary loss of information. Let us
continue to consider Example 3. Suppose we are told that Kelly is a bird. We
add bird(Kelly) to S3, that is, S3 = {penguin(Cheeky), bird(Kelly), penguin
vbird}. Since S2 ∪ S3 6|= flies(Kelly). So we cannot conclude that Kelly can
fly. This is because birdvflies is blocked and cannot be used to infer that
flies(Kelly).

5.2 Lexicographic-based approach

In this section, we apply the adapted lexicographic-based approach to the de-
scription logic setting. To do this, we need to extend the logic ALC with cardinal-
ity restrictions on concepts, which was proposed in [3]. Cardinality restrictions
on a concept C are of the form ≥ m C and ≤ n C, which express that the
concept C has at least m elements and at most n elements respectively. We only
consider cardinality restriction of the form ≤ n C. An interpretation I is said to
satisfy ≤ n C iff |CI |≤n. Each GCI CvD can be equivalently transformed into
a cardinality restriction of the form ≤ 0 Cu¬D, which says that the concept
Cu¬D is empty.

When a GCI is debugged to be erroneous, it is generally deleted to restore
consistency in current methods [18, 21, 24]. However, as we can see from Example
1, this can result in unnecessary loss of information. In [20], a method is proposed
to weaken a conflicting GCI rather than delete it. The idea is that we first
transform every GCI CvD into an equivalent cardinality restriction ≤ 0 Cu¬D.
For a cardinality restriction which is involved in conflict, we simply weaken it as
≤ n Cu¬D, where n≥1. We adopt this method to weaken a GCI.
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Definition 8. Let CvD be a GCI. A weakening (CvD)weak of CvD has the
form ≤ n Cu¬D, where n≥0. We use d((CvD)weak) = n to denote the degree
of (CvD)weak.

It is clear that d((CvD)weak) = 0 if (CvD)weak =≤ 0 Cu¬D.
We now consider the weakening of a stratified DL knowledge base.

Definition 9. Let K = {S1, ..., Sn} be a stratified DL knowledge base, where Sn

contains completely sure terminology axioms and assertion axioms. A stratified
DL knowledge base K ′ = {S′1, ..., S′n} is said to be a weakened base of K if it
satisfies the following conditions:

– K ′ is consistent,
– There is a bijection from S1 ∪ ...∪Sn−1 to S′1 ∪ ... ∪ S′n−1 such that for each
φ∈K, f(φ) is a weakening of φ,

– S′n = Sn.

The degree of a stratum S′i of a weakened base K ′ is defined as: degree(S′i) =
Σφweak∈S′

i
degree(φweak).

The ranking between weakened bases is defined as follows.

Definition 10. Let K be a stratified DL knowledge base. Let K ′ = {S′1, ..., S′n}
and K ′′ = {S′′1 , ..., S′′n} be two weakened bases of K. K ′ is said to be lex-
preferred to K ′′, denoted by K ′ >lex K

′′, if ∃i, 1≤i≤n such that 1) degree(S′i) <
degree(S′′i ), and 2) ∀j > i, degree(S′j) = degree(S′′j ).

Similar to the adapted lexicographic-based approach, we can define the fol-
lowing inference.

Definition 11. Let K ′ be a weakened base of K. K ′ is a lex-preferred weakened
base of K if there is no consistent weakened base K ′′ of K such that K ′′>lexK

′.
A formula ψ is said to be a lexicographic conclusion of K, denoted K |=lex ψ, if
ψ is a consequence of all lex-preferred weakened bases of K.

We illustrate the lexicographic-based approach by the following example.

Example 3. (Continuing Example 2) K ′ has three weakened bases: K1 = {S11,
S12, S13}, where S11 = {≤ 1 birdu¬flies}, S12 = S2 and S13 = S3; K2 =
{S21, S22, S23}, where S21 = S1, S22 = {≤ 1 penguinu¬flies} and S23 = S3;
K3 = {S31, S32, S33}, where S31 = S1, S32 = S2 and S33 = {penguin(Cheeky),≤
1 penguinu¬bird}. It is easy to check that K1 is the only lex-preferred weakened
base of K. Since K1 |= bird(Kelly), we have K |=lex bird(Kelly).

Next, we consider the semantic computation of the lexicographic-based ap-
proach.

Definition 12. Let W be a non-empty set of interpretations and I ∈ W, φ a
terminology axiom of the form CvD, and K be a DL knowledge base (K is not
stratified here). The number of φ-exceptions for I is:

eφ(I) =
{
|CI∩(¬DI)| if CI∩(¬DI) is finite

∞ otherwise. (1)
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The number of K-exceptions for I is eK(I) = Σφ∈Ke
φ(I). The ordering �K on

W is: I �K I ′ iff eK(I)≤eK(I ′), for I ′ ∈ W. I ≡K I ′ denotes I �K I ′ and
I ′ �K I

The definition of φ-exception originates from Definition 6 in [20]. However, in
[20], it is used to define an ordering �π

K on a set of interpretations with the same
pre-interpretation π = (∆π, dπ), where ∆π is a domain and dπ is a denotation
function which maps every individual name a to a different element in ∆π.

We define the lexicographical preference ordering as follows.

Definition 13. Let K = (S1, ..., Sn) be a stratified DL knowledge base, where
Sn contains completely sure terminology axioms and assertion axioms, and Ω be
the set of models of Sn. The lexicographical preference ordering �lex,K is defined
as I�lex,KI ′ iff ∀i∈{1, ..., n− 1}, I≡Si

I ′ or ∃i such that I ≺Si
I ′, and I≡Sj

I ′
for all n > j > i. The set of minimal models of K w.r.t �lex,K is denoted as
min(Ω,�lex,K).

The following results give semantic interpretation of the lexicographic-based
inference. We first prove a lemma.

Definition 14. Let K and K ′ be two consistent DL knowledge bases (K and
K ′ are not stratified), where K consists of terminology axioms. A DL knowledge
base Kweak,K′ is a weakened knowledge base of K w.r.t K ′ if it satisfies:

– Kweak,K′ ∪K ′ is consistent, and
– There is a bijection f from K to Kweak,K′ such that for each φ∈K, f(φ) is

a weakening of φ.

The set of all weakened bases of K w.r.t K ′ is denoted by WeakK′(K).

Lemma 1. Let K and K ′ be two consistent DL knowledge bases, where K con-
sists of terminology axioms, and I be an interpretation such that I |= K ′. Let
l = min(d(Kweak,K′) : Kweak,K′∈WeakK′(K), I |= Kweak,K′). Then eK(I) = l.

Proof. Suppose Kweak,K′ ∈ WeakK′(K) such that d(Kweak,K′) = l and I |=
Kweak,K′ . Let φ = CvD ∈ K and φweak∈Kweak,K′ . Suppose d(φweak) = n,
that is, φweak =≤n Cu¬D. Since I |= Kweak,K′ , I |= φweak. Moreover, for
any other weakening φ′weak of φ, if d(φ′weak) < n, then I 6|= φ′weak (because
otherwise, we find another weakening K ′

weak,K′ = (Kweak,K′ \{φweak})∪{φ′weak}
such that d(K ′

weak,K′) < d(Kweak,K′) and I |= K ′
weak,K′). So |CI∩¬DI |≤n.

We further have |CI∩¬DI |≥n. Otherwise, suppose |CI∩¬DI |<n. Then there
exists φweak of φ such that d(φ′weak) < n, this is a contradiction. Therefore,
eφ(I) = |CI∩¬DI | = n = d(φweak). That is, eK(I) = l.

Proposition 2. Let K = (S1, ..., Sn) be a stratified DL knowledge base, where
Sn contains completely sure terminology axioms and assertion axioms. φ is a
DL statement and Ω is the set of models of Sn. Then K |=lex φ iff I |= φ, for
all I ∈ min(Ω,�lex,K).
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Proof. Suppose K contains all the lex-preferred weakened bases of K. We need
to prove that for every interpretation I, I |= K iff I ∈ min(Ω,�lex,K), where
I |= K iff I |= Ki for all Ki ∈ K.

“Only if part”
Suppose I |= K and I6∈min(Ω,�lex,K). Then ∃I ′ such that I ′≺lex,KI. That

is, there exists some i such that I ′≺Si
I and I ′≡Sj

I for all n > j > i. Suppose
K ′ = {S′1, ..., S′n} ∈ K, then I |= K ′. Since I ′≡SjI for all n > j > i, by Lemma
1, there exists a weakened base S′′j of Sj such that I ′ |= S′′j and degree(S′j) =
degree(S′′j ). This can be proved by induction over priority level k of K.

For k = n−1. Since I ′≡Sn−1I, we have eSn−1(I) = eSn−1(I ′). By Lemma 1,
we have degree(S′n−1) = eSn−1(I). Moreover, there exists a weakened base S′′n−1

of Sn−1 such that degree(S′′n−1) = eSn−1(I ′). So degree(S′n−1) = degree(S′′n−1).
Suppose for all k≥l, where l>i+1, there exists a weakened base S′′k of Sk such

that degree(S′′k ) = degree(S′k) and I ′ |= Sk. Since k− 1>i, we have I ≡Sk−1 I ′.
That is, eSk−1(I) = eSk−1(I ′). Similarly, by Lemma 1, there exists a weakened
base S′′k−1 of Sk−1 such that I ′ |= S′′k−1 and degree(S′′k−1) = degree(S′k−1).

Since I ′≺Si
I, we have eSi(I ′)<eSi(I). By Lemma 1, there exists a weakened

base S′′i of Si such that I ′ |= S′′i and degree(S′′i ) < degree(S′i). This is a contra-
diction because we then can find a weakened base K ′′ = {S′′1 , ..., S′′n} such that
K ′′ >lex K

′. Therefore, if I |= K, then I∈min(Ω,�lex,K).
“If part”
Suppose I∈min(Ω,�lex,K). Let us assume that I 6|= K. Suppose K ′ is a

weakened base of K such that I |= K ′, and for there does not exist a weak-
ened base K ′′ of K such that I |= K ′′ and K ′′ >lex K ′. Since I 6|= K, we
have degree(K ′′) < degree(K ′) for all K ′′∈K. Let K ′′∈K and there exists an
interpretation I ′ such that I ′ |= K ′′. By Definition 10, there exists i such that
degree(S′′i ) < degree(S′i) and for all n > j > i, degree(S′′j ) = degree(S′j).
By Lemma 1, it is easy to show that eSj (I ′) = eSj (I) for all n > j > i and
eSi(I ′) < eSi(I). So I ′≺lex,KI, which is a contradiction.

This completes the proof.

According to Proposition 2, we can define the lexicographic-based inference
in a semantic way.

Definition 15. Let K = (S1, ..., Sn) be a stratified DL knowledge base. φ is a
DL statement. Then K lexicographically entails φ, denoted K |=lex φ, iff ω |= φ,
for all ω ∈ min(Ω,�lex,K).

Compared with possibilistic approaches, the lexicographic-based approach is
more fine-grained and can keep more original information. However, it is based
on cardinality restrictions on concepts, so it cannot be used to deal with inconsis-
tency in DLs which disallow cardinality restrictions on concepts. Furthermore, to
implement the lexicographic-based approach, we need to pinpoint the instances
which are responsible for the inconsistency, which is usually a hard task.
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6 Related Work

A lot of work has been done on handling inconsistency in DLs [1, 2, 21, 16, 24, 18,
20]. In [1], Reiter’s default logic is embedded into terminological representation
formalisms. In their paper, conflicting information is treated as exceptions. To
deal with conflicting default rules, they instantiated each rule using individuals
appearing in the ABox and applied two existing default reasoning methods to
compute all extensions. Then, in [2], priorities were introduced to default ter-
minological logic such that more specific defaults are preferred to more general
ones. In our stratification algorithm, we also give priority to a more specific de-
fault terminology. However, when handling inconsistency, we do not need the
instantiation step. Furthermore, in [1, 2], the resolution of conflicting ABox as-
sertions was not considered. Recently, some methods for repairing inconsistencies
[24, 21] or reasoning with inconsistent ontologies [16, 18] have been proposed. A
common problem with these methods is that they do not take advantage of DL
expressions. If a terminological axiom is detected to be erroneous (that is, it is
involved in a conflict), then it is simply deleted. In contrast, we introduce an
important DL expression, i.e. cardinality restrictions, to deal with an erroneous
terminological axiom. Our lexicographical-based approach is closely related to
the adaptive lexicographic-based approach in [8]. However, our approach is more
general than the adaptive lexicographic-based approach. The later can only deal
with inconsistencies arising due to instances (or individual names in DLs) ex-
plicitly introduced in the facts (or ABox assertions), while our approach is also
applicable when inconsistencies result from TBox axioms. In [20], the authors
proposed an algorithm, called refined conjunctive maxi-adjustment (RCMA),
for inconsistency handling in a stratified knowledge base based on cardinality
restrictions. Our second inconsistency handling method is also based on car-
dinality restrictions. However, our method differs from RCMA method in that
we only weaken those GCIs which are involved in conflict and RCMA method
weakens not only conflicting GCIs but also GCIs not involved in conflict. This
work is also related to some other approaches to extend DLs with nonmonotonic
theories, such as defeasible description logics [13, 17, 27] and belief change in DLs
[10, 11]. Defeasible description logics combines defeasible logic and description
logics by adding a layer of rules from defeasible logic on top of ontologies in
description logics. As in defeasible logic, an acyclic relation on the set of rules
is assumed to deal with conflicting rules. This preference relation may not be
a total preorder as we have assumed in the paper. The default terminology ax-
ioms are similar to the defeasible rules in defeasible description logics. However,
rules are not terminology axioms. In [10, 11], AGM’s theory of belief change has
been applied to description logics. However, they only studied the feasibility of
applying the generalized AGM postulates for belief change to DLs. No explicit
belief change operators were proposed in their papers.
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7 Conclusions

In this paper, we first proposed an approach to stratifying a DL knowledge base
such that a more specific conflicting terminology axiom is preferred to a more
general one. Then two inconsistency handling approaches first-order logic are
adapted to deal with inconsistency in a stratified DL knowledge base. The first
approach is the possibilistic logic approach, which drops formulas whose priority
level is not larger than the inconsistency degree. The deficiency of this approach
is that it suffers form the drowning problem and it will result in undesirable con-
clusions. In contrast, the second approach weakens the conflicting terminology
axioms instead of deleting them. The semantics of the approach is also discussed.

Our weakening method is based on cardinality restrictions. However, from the
implementation point of view, the cardinality restriction is not very promising as
no main-stream DL reasoners supports it yet. In a future work, we will explore
other DL constructors such as nominals to weaken terminology axioms. Finally,
to implement our approaches, an important problem is to detect GCIs and and
assertions which are responsible for the conflict. Some existing techniques on
debugging of unsatisfiable classes, such as debugging methods in [24, 21], may
be adapted to pinpoint the conflicting axioms in a stratified DL knowledge base.
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Abstract. In this paper we provide an overview and analysis of ap-
proaches for dealing with inconsistencies in DL-based ontologies. We
propose criteria for the comparison of the different approaches. These
criteria facilitate the users to choose an appropriate approach to dealing
with inconsistencies for their purpose.

1 Introduction

The problem of inconsistency (or incoherence) handling in ontologies is recently
attracting a lot of attention. Inconsistency can occur due to several reasons,
such as modeling errors, migration from other formalisms, merging ontologies,
and ontology evolution.

One way to deal with logical contradictions is to resolve logical modeling
errors whenever a logical problem is encountered1. Several methods have been
proposed to debug erroneous terminologies and have them repaired when incon-
sistencies are detected [SC03,Sch05,PSK05,FS05].

Considering the varieties of approaches to resolving inconsistency, we require
criteria for comparing these approaches to facilitate the selection of an appro-
priate approach. Three criteria are proposed in [HvHH+05]: (1) is the approach
applied at development or at runtime, (2) is the input a consistent or an incon-
sistent ontology, (3) is the output a consistent or an inconsistent ontology (or
an answer). While these criteria already provide a useful classification, they are
not sufficient for the selection of an adequate approach for a given application
scenario.

In this paper, we first propose some criteria for comparing approaches for
dealing with inconsistencies. We then give an overview of approaches for resolving
inconsistency and compare them against the proposed criteria.

The paper is organized as follows. Section 2 provides some basic notions of
terminology debugging. Some evaluation criteria are proposed in Section 3. We
then give an overview of approaches for repairing inconsistency in Section 4. In
Section 5, we compare existing approaches against the proposed criteria. Finally,
we conclude the paper in Section 6.
1 Another way to deal with inconsistencies is to reason with inconsistent ontologies

(such as the approach given in [HvHtT05]). However, the analysis of them is out of
the scope of this paper.
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2 Preliminaries

We assume that the reader is familiar with Description Logics (DLs) and re-
fer to Chapter 2 of the DL handbook [BCM+03] for an excellent introduc-
tion. A DL knowledge base (or local ontology) O consists of a TBox T and
an ABox A. A TBox contains intensional knowledge such as concept defini-
tions of the form CvD, where C and D are concepts. An ABox contains ex-
tensional knowledge and is used to describe individuals. Throughout this paper,
let T = {Ax1, ..., Axn} be a set of (terminological) axioms, where Axi is of the
form CivDi for each 1≤i≤n and arbitrary concepts Ci and Di. A TBox is called
unfoldable if the left-hand sides of the axioms (the defined concepts) are atomic,
and if the right-hand sides (the definitions) contain no direct or indirect reference
to the defined concept [Neb90].

We introduce the notion of incoherence in DLs defined in [FHP+06].

Definition 1 (Unsatisfiable Concept). A concept name C in a terminology
T , is unsatisfiable iff, for each model I of T , CI = ∅.

That would lead us to consider the kinds of terminologies and ontologies with
unsatisfiable concepts.

Definition 2 (Incoherent Terminology). A TBox T is incoherent iff there
exists an unsatisfiable concept name in T .

Definition 3 (Incoherent Ontology). An ontology O is incoherent iff its
TBox is incoherent.

According to the above definitions, we know that the incoherence can occur
only in the terminology level. Namely, an ontology O = 〈T ,A〉 is incoherent iff
its terminology TBox is incoherent. Incoherence does not provide the classical
sense of the inconsistency because there might exist a model for an incoherent
ontology.

Definition 4 (Inconsistent Ontology). An ontology O is inconsistent iff it
has no model.

Let us consider an ontology O = {C1(a), C2(b), C3vC1, C3vC2, C1v6=C2}. It is
clear that O is incoherent because C3 is an unsatisfiable concept in O and it
is consistent. However, incoherence and inconsistency related with each other.
According to the discussion in [FHP+06], incoherence is potential for the cause
of inconsistency. That is, suppose C is an unsatisfiable concept in T , if a con-
cept assertion C(a) exists in the ABox A, then the ontology O = 〈T ,A〉 is
inconsistent.

Current DL reasoners, such as RACER, can detect logical incoherence and
return unsatisfiable concepts in OWL ontologies. However, typically they do not
support the diagnosis and incoherence resolution. To explain logical incoherence,
it is important to debug relevant axioms which are responsible for the contra-
diction.
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Definition 5. [SC03] Let A be a named concept which is unsatisfiable in a TBox
T . A set T ′⊆T is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T
if A is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′. The
set of all MUPS of T w.r.t A is denoted as MUA(T )

A MUPS of T w.r.t A is the minimal sub-TBox of T in which A is unsatis-
fiable. We will abbreviate the set of MUPS of T w.r.t a concept name A by
mups(T , A). Let us consider an example from [SC03]. Suppose T contains the
following axioms:

ax1 : A1v¬AuA2uA3 ax2 : A2vAuA4

ax3 : A3vA4uA5 ax4 : A4v∀s.BuC

ax5 : A5v∃s.¬B ax6 : A6vA1t∃r.(A3u¬C uA4)
ax7 : A7vA4u∃s.¬B

where A, B and C are atomic concept names and Ai (i = 1, ..., 7) are defined
concept names, and r and s are atomic roles. In this example, the unsatisfiable
concept names are A1, A3, A6, A7 and MUPS of T w.r.t Ai (i = 1, 3, 6, 7) are:

mups(T , A1) : {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T , A3) : {ax3, ax4, ax5}
mups(T , A6) : {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T , A7) : {ax4, ax7}
MUPS are useful for relating sets of axioms to the unsatisfiability of specific

concepts, but they can also be used to calculate a minimal incoherence preserving
sub-TBox, which relates sets of axioms to the incoherence of a TBox in general
and is defined as follows.

Definition 6. [SC03] Let T be an incoherent TBox. A TBox T ′⊆T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every
sub-TBox T ′′⊂T ′ is coherent. The set of all MIPSs of T is denoted as MI(T ).

A MIPS of T is the minimal sub-TBox of T which is incoherent. The set of
MIPS for a TBox T is abbreviated with mips(T ). For T in the above example,
we get 3 MIPS:

mips(T ) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

3 Criteria

In this section we discuss a number of criteria for the comparison of approaches
to dealing with inconsistency in distributed knowledge bases.

Applications Resolving inconsistencies is an important issue to address for
a number of different tasks in ontology management. While some approaches
are general and may be applied for different tasks, other approaches are devel-
oped to support particular applications such as Repair of inconsistent ontologies,
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Evolution of ontologies, or Merging of potentially mutually inconsistent ontolo-
gies.Depending on the assumptions, particular approaches may be applicable to
one or many of these application scenarios.

Granularity of Repair Dealing with and resolving inconsistencies can be per-
formed on different levels of granularity. Most approaches consider a knowledge
base as a set of axioms. In a trivial way, knowledge bases may be repaired by
simply removing problematic axioms completely. However, often only parts of
an axiom may be the true cause of an inconsistency. In such cases, more fine
granular approaches (e.g. on the level of concepts) would be desirable. Some
approaches are more fine granular in the sense that they allow weaken axioms
by changes on to the substructure of the axioms.

Preservation of Structure Often the algorithms for diagnosing and repair-
ing inconsistencies require some transformation of the knowledge base to some
normal form (e.g. negation normal form.) While the thus obtained knowledge
bases are logically equivalent, they may be un-intuitive to the user. If a repair
is performed based on that normal form, the effect on the original structure of
the knowledge base may be hard to reconstruct. However, the traceability of
effects in terms of the original knowledge base is often important for the user. It
is therefore desirable to preserve the structure of the original axioms wherever
possible.

Inconsistency vs. Incoherence: Inconsistency is often used as a term to refer
to a number of different types of conflicts in a knowledge base. On the level of
the TBox, typically the notions of unsatisfiability and incoherence are relevant.
A concept is unsatisfiable w.r.t. a terminology if, and only if its interpretation
is empty in every model of the terminology. A TBox is incoherent if it contains
an unsatisfiable concept. On the other hand, inconsistency of an ontology means
that there exists no model at all for the ontology. Inconsistency may occur both
in the TBox and the ABox.

Support for terminological and assertional knowledge When dealing
with inconsistencies it often is important to consider whether an inconsistency
occurs in the TBox (as part of the terminological knowledge) or whether the
ABox (assertional knowledge, i.e. the data corresponding to some TBox) is in-
consistent. In Description Logics, the problem of diagnosis has classically focused
on dealing with coherence on the terminological level. In many applications it is
however important to deal with various forms of inconsistencies and incoherence
in ABoxes and TBoxes in an integrated way. Some approaches provide solutions
to dealing with either one type of inconsistency and disregard the other. Others
do not make the distinction at all.

Complexity Reasoning with expressive Description Logics typically is already
intractable for standard reasoning tasks. Often the approaches for dealing with
inconsistencies introduce an additional level of complexity. Complexity results
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thus depend on the complexity on the supported logic on the one hand, and
the properties of the algorithms for handling inconsistencies on the other hand.
In order to assure practicability, these complexity issues need to be taken into
account.

Support for Multiple/networked knowledge bases Many approaches to
dealing with inconsistencies have been developed for dealing with single, iso-
lated ontologies. Few approaches have been developed specifically for dealing
with multiple ontologies that are networked or distributed in a certain way.
Other approaches may be applied to multiple knowledge base scenarios by sim-
ply considering the union of the individual knowledge bases as a single knowledge
base. We evaluate what kind of networking relationships are supported or how
the approach can be extended to operate with multiple ontologies.

Exploitation of background / context knowledge Typical approaches for
dealing with inconsistencies only consider the content of the knowledge base
itself as input for diagnosis and repair. However, often it is useful to consider
additional information about the relevance and importance of particular parts
of the knowledge base as background knowledge. Such context information may
be captured as provenance (e.g., indicating the trustworthiness of the source),
in the form arguments (e.g., why certain axioms have been introduced), etc.

Interactivity, user involvement Many approaches to dealing with inconsis-
tencies aim at a completely automated procedure. Others rely on the user to
decide how to deal with particular situations. For example, it may be possible
that the diagnosis of the problem is performed automatically, but the decision
about how to fix a problem may be left to the user.

Availability of implementations Finally we discuss whether the approach is
implemented and available for use or whether it would be feasible and desirable
to implement it.

4 Overview of Approaches

In this section, we give an overview of the approaches for resolving inconsistency.
When resolving inconsistency, we can either delete some erroneous axioms or
weaken them. In any case, we often expect that minimal information is dropped
to restore inconsistency. To achieve this requirement of minimal change, we of-
ten need a technique called debugging, which we will introduce in the following.
There are mainly two important groups working on debugging and repairing
incoherent ontologies. The first group comes from the Vrije Universiteit Amster-
dam and the second group is the MindSwap group at University of Maryland.
There are other work on resolving inconsistency which discuss specific scenario
such as ontology revision and ontology integration. In the following, we first in-
troduce the approaches for debugging and diagnosis. After that, we give a brief
review of the application of AGM’s belief revision theory to DLs. Finally, we
introduce the approaches for knowledge integration in DLs.
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4.1 Debugging and Diagnose DL-based Ontologies in MUPSter

We recapitulate two approaches given in [SHC06] which are proposed to debug
an ontology, i.e. to calculate MUPS and MIPS: a top-down approach and an
informed bottom-up approach.
A top-down approach to explanation: The first approach is originally pro-
posed in [SC03]. Their debugging approach is restricted to unfoldable ALC
TBoxes. Suppose T is an incoherent unfoldable TBox and A is an unsatisfi-
able in it. To calculate a MUPS of T w.r.t A, we can construct a tableaux from
a branch B initially containing only labelled formula (a : A)∅ (for a new in-
dividual name a) by applying the tableaux rules as long as possible. The rules
are standard ALC-tableaux rules with lazy unfolding, and have to be read as
follows: assume that there is a tableaux T = {B,B1, ..., Bn} with n+1 branches.
After applying one of the rules on B, we get a tableaux T ′ = {B′, B1, ..., Bn} or
T ′′ = {B′, B′′, B1, ..., Bn}.

Once no more rules can be applied, we know which atoms are needed to close
a saturated branch and can construct a minimization function for A and T ac-
cording to the tableaux rules. A propositional formula φ is called a minimization
function for A and T if A is unsatisfiable in every subset of T containing the
axioms which are true in an assignment making φ true. Here axioms are used as
propositional variable in φ. As we can identify unsatisfiability of A w.r.t a set
S of axioms with a closed tableaux using only the axioms in S for unfolding,
branching on a disjunctive rule implies that we need to join the functions of the
appropriate sub-branches conjunctively. If an existential rule has been applied,
the new branch B′ might not necessarily be closed on formulas for both indi-
viduals. Assume that B′ closes on the individual a but not on b. In this case
min function(a,B, T ) = ⊥, which means that the related disjunct does not
influence the calculation of the minimal incoherent TBox.

Based on the minimisation function min function(a, {(a : A)∅}, T ), de-
noted φ, which is calculated using some rules, we then can calculate the MUPS
of T w.r.t A.

From MUPS we can easily calculate MIPS based on an additional operation
on sets of TBoxes, called subset-reduction. Let M = {T1, ..., Tm} be a set of
TBoxes. The subset-reduction of M is the smallest subset sr(M)⊆M such that
for all T ∈M there is a set T ′∈sr(M) such that T ′⊆T .

Let T be an incoherent TBox with unsatisfiable concepts ∆T . The set of all
MIPSs of T , denoted mips(T ), is obtained by the following equation: mips(T ) =
sr(

⋃
A∈∆T mups(T , A)), where mups(T , A)) is the set of all MUPSs of T w.r.t

A.
A bottom-up approach to explanation: The top-down approach is based
on modifying the internals of a DL reasoner. This approach is computationally
very hard in the worst-case. In [SHC06], a bottom-up approach is proposed to
calculate MUPS with the support of an external DL reasoner. The main advan-
tage of this approach is that it can deal with any DL-based ontology supported
by an external reasoner. Unlike the top-down approach, they support various
DL-based ontology languages, including OWL-DL.
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Given an unsatisfiable concept A and a terminology T , MUPS can be sys-
tematically calculated by checking whether A is unsatisfiable in subsets T ′ of T
of increasing size. Such a procedure is complete and easy to implement, but in-
feasible in practice because the number of the subsets of T is exponential to the
number of axioms in T . To solve this problem, a selection function is introduced
to control the subsets of T that are checked for satisfiability of A. Such a selec-
tion function selects increasingly large subsets which are heuristically chosen to
be relevant additions to the currently selected subset. Although this approach
is not guaranteed to give us the complete solution set of MUPS, it provides an
efficient approach for debugging inconsistent terminologies.
Calculating terminological diagnoses: Terminological diagnosis, as defined
in [Sch05], is an instance Reiter’s diagnosis from first principles. Therefore, we
can use Reiter’s algorithms to calculate terminological diagnoses. An important
notion in diagnosis is called a conflict set, which is an incoherent subset of a
TBox. Given a TBox T , a subset T ′ of T is a diagnosis for an incoherent T if
T ′ is a minimal set such that T \ T ′ is not a conflict set for T .

Reiter introduced a hitting set tree algorithm to calculate diagnoses from
conflict sets [Rei87]. Given a collection of sets C, a hitting set for C is a set
H⊆ ∪S∈C S such that H∩S 6=∅ for each S∈C. A hitting set H for C is minimal
if and only if the following conditions hold: (1) H is a hitting set; (2) for any
H ′∈C, if H⊂H ′, then H ′ is a hitting set for C. It has been shown in [SHC06]
that a subset T ′ of T is a diagnosis for an incoherent TBox T if and only if T ′

is a minimal hitting set for the collection of conflict sets of T .
To calculate minimal hitting sets, we can adapt Reiter’s hitting set tree (HS-

tree) algorithm. Given a collection C of sets, a HS-tree T is the smallest edge-
labeled and node-labeled tree, such that the root is labeled by X if C is empty.
Otherwise it is labeled with any set in C. For each node n in T , let H(n) be the
set of edge labels on the path in T from the root to n. The label for n is any set
S ∈ C such that S u H(n) = ∅, if such a set exists. If n is labeled by a set S,
then for each σ ∈ S, n has a successor, nσ joined to n by an edge labeled by σ.
For any node labeled by X, H(n), i.e. the labels of its path from the root, is a
hitting set for C.

Figure 1 shows a HS-tree T for the collection C =
{{1, 2, 3, 4, 5, 6}, {3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}} of sets. T is created
breadth first, starting with root node n0 labeled with {1, 2, 3, 4, 5, 6}. For
diagnostic problems the sets in the collection are conflict sets which are created
on demand. In our case, conflict sets for a terminological diagnosis problem can
be calculated by a standard DL engine (by definition each incoherent subset of
T is a conflict set).

4.2 Debugging and Repairing OWL Ontologies in SWOOP

A drawback of the debugging approach in [SC03] is that it is restricted to unfold-
able ALC TBoxes. Furthermore, it is based on the tableaux algorithms for DLs.
Therefore, it is dependent on the tableaux reasoner. In [PSK05,KPGS06], two
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Fig. 1. HS-Tree with small conflict sets

orthogonal debugging approaches are proposed to detect the clash/sets of sup-
port axioms responsible for an unsatisfiable classes, and to identify root/derived
unsatisfiable classes. The first one is a glass box approach which is based on
description logic tableaux reasoner-Pellet. This approach is closely related to
the top-down approach to explanation in [SHC06]. However, the approach pro-
posed in [PSK05] is not limited to DL ALC and is designed for OWL DL. The
second one is a black box approach [KPGS06] which is better suitable to iden-
tify dependencies in a large number of unsatisfiable classes. The approach is
reasoner-independent, in the sense that the DL reasoner is solely used as an
oracle to determine concept satisfiability with respect to a TBox. It consists of
two main steps. In the first step, it computes a single MUPS of the concept and
then it utilizes the Hitting Set algorithm to retrieve the remaining ones. This
approach is closely related to the bottom up approach to explanation. Based on
the debugging approach, in [KPSG06], the authors give a tool to repair unsatis-
fiable concepts in OWL ontologies. The basic idea is to rank erroneous axioms
and then to generate a plan to resolve the errors in a given set of unsatisfiable
concepts by taking into account the axiom ranks.

4.3 Consistent Ontology Evolution

[HS05] describes a process to support the consistent evolution of OWL DL based
ontologies, which ensures that the consistency of an ontology is preserved when
changes are applied to the ontology. The process consists of two main phases:
(1) Inconsistency Detection, which is responsible for checking the consistency of
an ontology with the respect to the ontology consistency definition and identi-
fying parts in the ontology that do not meet consistency conditions; (2) Change
Generation, which is responsible for ensuring the consistency of the ontology by
generating additional changes that resolve detected inconsistencies. The authors
define methods for detecting and resolving inconsistencies in an OWL ontology
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after the application of a change. As for some changes there may be several
different consistent states of the ontology, resolution strategies allow the user to
control the evolution.

The methods for detecting inconsistencies rely on the idea of a selection
function are to identify the relevant axioms that contribute to the inconsistency.
In the most simple case, syntactic relevance – considering how the axioms of
the ontology are structurally connected with the change – is used. Based the
selection function, algorithms to find minimal inconsistent subontologies and
maximal consistent subontologies are presented.

The approach only supports repairs by removing complete axioms from the
ontology, a weakening based on a finer granularity as future extension is men-
tioned, but no algorithms are proposed. The approach does not make a distinc-
tion between ABox and TBox axioms, as such both ABox and TBox inconsisten-
cies are trivially supported. Further, the approach does not provide any explicit
support for dealing with networked ontologies.

4.4 AGM’s Postulates for Belief Change and Description Logics

AGM’s theory of belief change [Gar88] has been widely used to deal with log-
ical inconsistency resulting from revising a knowledge base by newly received
information. There are three types of belief change, i.e. expansion, contraction
and revision. Expansion is simply to add a sentence to a knowledge base; con-
traction requires to consistently remove a sentence from a knowledge base and
revision is the problem of accommodating a new sentence to a knowledge base
consistently. Alchourrón, Gardenfors and Markinson proposed a set of postulates
to characterize each belief change operator. The application of AGM’ theory to
description logics is not trivial because it is based on the assumptions that gen-
erally fail for DLs [FPA04]. For example, a DL is not necessarily closed under
the usual operators such as ¬ and ∧. In [FPA05,FPA06], the basic AGM postu-
lates for contraction were generalized to DLs and the feasibility of applying the
generalized AGM theory of contraction to DLs and OWL was studied. There
work is based on the coherence model2. That is, the knowledge base is closed un-
der consequence operation, i.e., K = Cn(K), where K is a knowledge base and
Cn is the consequence operation of the underlying language. They showed that
in many important DLs, such as SHOIN (D) and SHIQ, it is impossible to
define a contraction operator that satisfies the generalized AGM postulates. In
[FHP+06], the authors first defined the notions of axiom negation and discussed
postulates for revision. However, explicit construction of a revision operator was
not considered in these papers.

4.5 Knowledge Base Revision in Description Logics

The work in [FPA04,FPA05,FPA06] presumes that the original DL knowledge
base is closed under logical consequence relation and the result of revision is
2 The notion of coherence model has nothing to do the notion of incoherence in DLs

defined in Section 2.
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still a DL knowledge base which is closed under logical consequence relation. In
[QLB06a], the revised AGM postulates for belief revision in [KM92] were gener-
alized and two revision operators which satisfy the generalized postulates were
given. One operator is the weakening-based revision operator which is defined
by weakening of statements in a DL knowledge base. The weakening-based re-
vision operator may result in counterintuitive results in some cases, so another
operator was proposed to refine it. It was shown that both operators capture
some notions of minimal change.

4.6 Knowledge integration for description logics

In [MLB05], an algorithm, called refined conjunctive maxi-adjustment (RCMA
for short) was proposed to weaken conflicting information in a stratified DL
knowledge base and some consistent DL knowledge bases were obtained. To
weaken a terminological axiom, they introduced a DL expression, called cardi-
nality restrictions on concepts. However, to weaken an assertional axiom, they
simply delete it. In [QLB06b], the authors first define two revision operators
in description logics, one is called a weakening-based revision operator and the
other is its refinement. The revision operators are defined by introducing a DL
constructor called nominals. The idea is that when a terminology axiom or a
value restriction is in conflict, they simply add explicit exceptions to weaken it
and assume that the number of exceptions is minimal. Based on the revision
operators, they then propose an algorithm to handle inconsistency in a stratified
description logic knowledge base. It was shown that when the weakening-based
revision operator is chosen, the resulting knowledge base of their algorithm is se-
mantically equivalent to that of the RCMA algorithm. However, their syntactical
forms are different.

5 Discussion

We have introduced some existing approaches for resolving inconsistency and
incoherence in DLs. In this section, we compare these approaches with respect
to the evaluation criteria proposed in Section 3.1. The results of comparison are
compactly summarized in Table 1 and Table 2.

According to Table 1 and Table 2, MUPSter and SWOOP are mainly ap-
plied to debug and repair incoherence, whilst other approaches are applied to
deal with inconsistency. When resolving incoherence, MUPSter will delete ax-
ioms in the TBox and SWOOP deletes either axioms or concepts in the TBox.
To resolve inconsistency, the knowledge base revision approaches and knowledge
integration approaches either delete axioms in a DL knowledge base or remove
some instances which are responsible for inconsistency. However, the AGM-based
approach for revision in DLs and the approach on consistent ontology evolution
simply delete the whole axioms. Before dealing with incoherence, both MUPster
and SWOOP may split the axioms into smaller axioms, so the structure will be
lost. One of the knowledge base revision approaches given in [QLB06a], called
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Table 1. Evaluation results

Criteria MUPSter SWOOP AGM-based
approaches

Application debugging, repair debuging, repair revision
Granularity axiom axiom or concept axiom

Preservation of structure partially partially no
Support for ABox, TBox TBox TBox TBox and ABox

Inconsistency vs. Incoherence incoherence incoherence inconsistency
Complexity PSPACE-complete PSPACE-hard PSPACE-hard

User involvement no yes no
Availability of implementation yes yes no

Support for networked ontologies no no no
Exploitation of context no partially no

Table 2. Evaluation results

Criteria consistent ontology knowledge base knowledge
evolution revision integration

Application ontology evolution revision merging
Granularity axiom axiom or instance axiom or instance

Preservation of structure yes partially partially
Support for ABox, TBox TBox and ABox TBox and ABox TBox and ABox

Inconsistency vs. Incoherence inconsistency inconsistency inconsistency
Complexity PSPACE-hard PSPACE-hard PSPACE-hard

User involvement yes no no
Availability of implementation yes no no

Support for networked ontologies no no yes
Exploitation of context no no yes

refined weakening-based revision approach, also requires to split axioms, so it
does not preserve the structure of the axioms. The weakening-based revision ap-
proach in [QLB06a] does not change the structure of the axioms. The knowledge
integration approach proposed in [MLB05] needs to transform all terminology
axioms into the cardinality restrictions on concepts. So the structure of the ax-
iom is lost. It has been shown that debugging in DL ALC is PSPACE-complete
in [SC03] because it is based on tableaux algorithm. The glass box approach
is also based on tableaux algorithm, so it is at least PSPACE-hard. Other ap-
proaches are at least PSPACE-hard because they need to checking inconsistency,
which is PSPACE-hard. Among all the approaches, only MUPSter and SWOOP
are implemented and only SWOOP has user interface. The MUPSter, AGM-
based approaches and the knowledge base revision approaches do not explore
context information to deal with incoherence or inconsistency. Whilst SWOOP
and knowledge integration approaches explore the ranking information to resolve
incoherence or inconsistency.
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6 Conclusion

In this paper, we have provided a survey of existing work on resolving inconsis-
tency in DL-based ontologies. We then proposed a set of criteria for comparing
between different approaches.

It does not come as a surprise that none of the surveyed approaches is uni-
versally applicable for any application scenario, instead different approaches are
good for different purposes. Our comparison aims at supporting the selection of
the right tools for the job.

As a general observation we see that the use of context information in the
process of repairing ontologies as well as the support for multiple, networked
ontologies is still underdeveloped. As part of our future work, we plan to advance
the techniques for dealing with inconsistencies in these directions.
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