
NATIONAL CENTER FOR SCIENTIFIC RESEARCH
"DEMOKRITOS"

Institute of Informatics
& Telecommunications
Software & Knowledge Engineering Laboratory

Developers’
Guide to
Ellogon

Stergos D. Afantenos
George Petasis

Vangelis Karkaletsis

June 2002

Table of Contents

1 INTRODUCTION 2

1.1 WHAT IS ELLOGON? 2
1.2 ESSENTIAL INGREDIENTS 3
1.3 WHAT FOLLOWS 3
1.4 ACKNOWLEDGMENTS 4

2 COMPONENTS’ FILES 5

2.1 CREATING A COMPONENT 5
2.2 COMPONENTS’ FILES 5
2.2.1 THE CONFIGURATION FILE 6
2.2.2 THE SOURCE FILE 9

3 ELLOGON API THROUGH AN EXAMPLE 12

3.1 THE GAZETTEER LOOKUP 12
3.2 THE CODE 13
3.2.1 THE INITIALIZATION PROCEDURE 13
3.2.2 THE FINALIZATION PROCEDURE 14
3.2.3 THE MAIN PROCEDURE 14

4 IMPORTING EXTERNAL COMPONENTS TO ELLOGON 20

4.1 A PART OF SPEECH TAGGER 20
4.2 IMPORTING EXTERNAL COMPONENTS 20

5 FURTHER INFORMATION ABOUT THE ELLOGON API 29

1 Introduction

Natural Language Processing (NLP) emerged as a mixed field of Computational
Linguistics and Artificial Intelligence, during the 1950’s. Since then there is a con-
stant outburst of interest, not only from people involved in academic research, but
also from companies involved in the production and commercial exploitation of
language engineering systems.

What all those people have in common is the need for a tool that will assist them
on their research. Here, in the SKEL laboratory of the NCSR "Demokritos", we
have developed Ellogon, a multi-lingual, cross-platform text-engineering environ-
ment developed exactly to aid people who are doing research in Computational
Linguistics, as well as companies which produce and deliver language engineering
systems. Ellogon was developed in an attempt to create the necessary infrastructure
to facilitate the development and distribution of various NLP tools.

1.1 What is Ellogon?
Before proceeding with what the Ellogon platform is, we would like to tell some
words about what Ellogon, as a word, means and how come we chose that particular
name. Ellogon (Ελλογον) is composed from the ancient Greek words εν + λόγος,
which taken together mean “in accordance with logic”. The Ellogon platform is actu-
ally in accordance with the logic, the logic that lurks underneath each writer of a
text, and helps scientists, working in the area of NLP, exploit that logic and make
bare all the information that lie inside a passage. But there is more to the story.
“Logos”, furthermore, can be translated as oration, talk, utterance or written
speech. We chose to name our platform Ellogon because it deals with texts, written
speeches or passages in other words, and makes the information that lie inside such
passages emerge.

Had we to describe the Ellogon platform within a few words, we could say that El-
logon is a general-purpose text-engineering platform. The word “platform” was empha-
sized here, in order to show that Ellogon is simply an environment and as such, it
does not claim to perform any sort of linguistic processing. This is done with the
use of external embeddable components, which may be written either in Tcl/Tk or
in C/C++.

Chapter

1

 3

In another manual, the User Guide to Ellogon, we described the process of creating
such components, but didn’t delve into the details of how to write code using the
API of Ellogon. The purpose of this manual is to do exactly that. That is, to explain
in detail the Ellogon API.

1.2 Essential Ingredients
Before proceeding with the details that will enable one to create, test and debug
components on Ellogon, there are some things that one has to know and have some
experience with them, in order for this manual to be comprehensive.

The best introduction to the Ellogon is the User Guide to Ellogon. The potential de-
veloper of components for Ellogon ought to have read that manual and have some
experience with the Ellogon through the components that someone else has written,
or through the components that are provided with the standard edition of Ellogon.
If this sounds too much, one ought to have acquired an understanding, at least, of
the Data Model of Ellogon, described in Chapter 2 of the User Guide to Ellogon. Some
understanding of the details described in Chapter 3 “Working with Ellogon” is also
needed.

If you have already read that manual, then you will know that the core of Ellogon,
the Collection and Document Manager (CDM), is written in C++ and that linguistic
processing is done with the use of external embeddable components, which may
be written either in Tcl/Tk or in C/C++. Thus a basic requirement for writing
components in Ellogon is to know very well either Tcl/Tk or C/C++ or even, pref-
erably, both. In this manual we shall take for granted that you are an experienced
programmer in Tcl/Tk and C/C++.

1.3 What follows
Apart from this introductory chapter, this manual contains three more chapters. In
the second chapter we shall freshen up your memory on how to create a compo-
nent. The main discussion of that chapter will be the files that the Ellogon creates
for the component, and the procedures that those files contain.

In the third chapter, we shall take a first look on the Ellogon API through an exam-
ple. The example will be the construction of a simple gazetteer lookup.

In the last chapter, we are going to describe the process of importing external ex-
ecutable programs into Ellogon Components.

Note that in this preliminary draft version of the Developers’ Guide to Ellogon we shall
limit ourselves to Tcl. In the following versions of this manual, our discussion will
be expanded so that it will also include C/C++.

 4

1.4 Acknowledgments
We would like to thank our colleagues from the NLP group of the University of
Sheffield and especially the development team of the GATE 1 text engineering
platform. Our cooperation with the University of Sheffield in the context of the
R&D projects ECRAN1 and GIE2, motivated us to be actively involved in the area
of text engineering platforms and make our first efforts towards the development
of Ellogon.

1 ECRAN is an R&D project on Information Extraction, partially funded by the EC (Telematics Appli-
cations / Language Engineering Action), 12/1995 – 02/1999. ECRAN partners were Thomson-CSF
(France, coordinator), Universita di Ancona (Italy), Universita di Roma “Tor Vergata” (Italy), Smart In-
formation Services GmbH (Germany), NCSR "Demokritos" (Greece), Friburg University (Switzerland),
University of Sheffield (UK).

2 GIE is a bilateral project (English-Greek) on named entity recognition, funded by the Greek General
Secretariat of Research & Technology and the British Council, 05/1997-05/1999. GIE partners were
NCSR "Demokritos" and the University of Sheffield.

 5

2 Components’ Files

In Chapter 3 of the User Guide to Ellogon, and in particular in sections 3.6 and 3.7,
we described how to create and modify components. We presume that you are
already acquainted with those sections. In this chapter, we shall refresh your mem-
ory on how to create components, and then we shall describe the files that Ellogon
creates and the procedures that they contain.

2.1 Creating a component
In the Ellogon main window, select Create New Module from the Module
menu. In the dialog box that opens, define a name for the component and set the
various parameters, such as the pre-conditions, post-conditions and the various
viewers that will be attached to the component.

For the purpose of the example that will follow in the next chapter we shall simply
set the name of the component as ExampleGazeteer3 and the component’s
title will be set to “Example Gazeteer”. No pre-conditions or post-conditions will
be set. Also, we will not associate any viewer with the component.

When you have finished push the “Save” button on the dialog. (See also Figure 2.1)

2.2 Components’ files
Once you have pushed the “Save” button, Ellogon will create a new folder in the
directory you have specified, which will have the same name as the component
name. In the case we have a windows system, that folder will be the following:

C:\modules\ExampleGazeteer

In case we have a UNIX system, that folder will be
~/modules/ExampleGazeteer

where the ~ represents your home directory.

3 Components’ names do not contain spaces and some other characters such as (; , : . -) In general valid
component names are valid names of C++ functions. See also Section 3.6 of the User’s Guide to Ellogon.

Chapter

2

 6

Figure 2.1 Creating a new component

2.2.1 The configuration file

In that directory two fresh files will be created. The first one will always be called
creole_config.tcl and you can see it in Figure 2.2.

As you can see, this file contains several pieces of information. In summary, the
information that this file contains are the following:

• Title:
It contains the title of the component. In our example it is the line:
title {Example Gazeteer}

• Pre-conditions:
It contains information about the collection and document attributes and
the annotations that must exist as pre-conditions. These pre-conditions
must be satisfied in order for the component to be able to execute cor-
rectly. In our example we set no pre-conditions for the Collection and
Document attributes, but we set pre-conditions for the annotations that
the Collection should contain. The line annotations {{token type}} indi-
cates that the Documents of the Collection should contain annotations
“token” with the attribute “type”.

• Post-conditions:
Similarly, post-conditions contain information about the collection and
document attributes and the annotations that will be added when the
component is executed. In our example no Collection attributes will be
added when the module finishes processing, but the Documents will get
the attribute “ExampleGazeteer”. The line annotations {lookup {lookup

type}} indicates that when the module finishes processing the Documents
will contain “lookup” annotations with attribute “type”.

 7

• Viewers
It contains information about the viewers (such as the single-span or the
raw text viewer) that are associated with the component. These viewers can
be easily accessible through a special menu offered by Ellogon GUI when
the component has been executed. That menu appears if you click on the
component once it has finished processing. In our example we have asso-
ciated four viewers with that component. The line {lookup type} sin-

gle_span {Lookup Annotations...} indicates that a single span viewer will be
associated with the component which will contain the “lookup” annota-
tions with attribute “type” and will be labelled “Lookup Annotations …”.
Similarly for the line {token type} single_span {Token Annotations...}. The
line {lookup} raw {Raw Lookup Annotations...} is instructing Ellogon to asso-
ciate a raw viewer with the component, which will show the “lookup” an-
notations and it will be labelled “Raw Lookup Annotations”. Finally the
line {token} AnnotationExplorer {Explore Annotations...} will associate an
Annotation Explorer viewer that will contain the “token” annotations and
iyt will be labelled “Explore Annotations…”.

• Parameters
Information concerning the parameters (see section 3.6.3 of the User Guide
to Ellogon) is stored here. In our case we have set three parameters for the
example component that we have created. The first two are two files which
contain the lists that comprise the gazetteer. The lines {Location List}

%FILE% {$creole_ExampleGazetteer_home/gazloc.lst} and {Person List}

%FILE% {$creole_ExampleGazetteer_home/gazper.lst} indicate that two vari-
ables {Location List} and {Person List} will contain the paths for the loca-
tion and person file respectively (see Table 3.1). The variable
$creole_ExampleGazetteer_home contains the path of the component. The
third parameter {Dummy Boolean Parameter} 0 {} contains simply a dummy
Boolean parameter that serves no actual purpose but only to show you
how to define Boolean parameters. It is set to 0 so the checkbox will ap-
pear unchecked.

• Language
It contains the information about the programming language in which the
component is written. In our example, coupling loose means that the
component is written in Tcl.

• Description
A small description of the component, as given in the dialog box, is con-
tained herein. (see Figure 2.1)

• Compatibility-Mode
This variable declares the compatibility mode under which this component
should be executed. Currently, two compatibility modes are available: El-
logon’s native mode (value 0) and GATE 1 compatibility mode (value 1).
Available values may be increased in future versions of Ellogon, if addi-

 8

tional compatibility modes are supported. In our example, the component
will not use any compatibility mode, as it is an Ellogon native component.

The above information was placed to the configuration file according to the speci-
fications we have given on the dialog box depicted in Figure 2.1. In case you want
later to change something (e.g. a pre-condition) you shall have to manually enter the
changes into the creole_config.tcl file. Generally, that is not recommended, unless
of course you are an expert Ellogon user and developer.

#
ExampleGazetteer/creole_config.tcl - configuration file
#
Tuesday June 11 14:42:10 (EEST) 2002
#
$Id: template_config.tcl, Ellogon, version 1.0...
(Georgios Petasis, 23/11/1998), petasis@iit.demokritos.gr
$

set creole_config(ExampleGazetteer) \
{

title {Example Gazetteer}
pre_conditions
{

collection_attributes {}
document_attributes {}
annotations {{token type}}

}
post_conditions
{

collection_attributes {}
document_attributes {ExampleGazetteer}
annotations {lookup {lookup type}}

}
viewers
{

{lookup type} single_span {Lookup Annotations...}
{token type} single_span {Token Annotations...}
{lookup} raw {Raw Lookup Annotations...}
{token} AnnotationExplorer {Explore Annotations...}

}
parameters
{

{Location List} %FILE% {$creole_ExampleGazetteer_home/gazloc.lst}
{Person List} %FILE% {$creole_ExampleGazetteer_home/gazper.lst}
{Dummy Boolean Parameter} 0 {}

}
coupling loose
description {Author: stergos, Tue Jun 11 14:28:06 EEST 2002}
module_encoding iso8859-7

};# ExampleGazetteer

Compatibility Mode: Use 0 for Ellogon mode.
set ::CDM::ComponentMode(creole_ExampleGazetteer) 0

#
End of File
#

Figure 2.2 The creole_config.tcl file

 9

2.2.2 The source file

The other file that is created by Ellogon is the source file, in which our source code,
that will perform a specific job, will be placed. You can see that file in Figure 2.3.
The name of that file is the name of the component that we gave in the dialog box
depicted in Figure 2.1 with the “.tcl” extension.

As you can see, this file contains three procedures and defines a variable. The vari-
able always has the form:

creole_{the name of the component}_home

In our example that variable is the creole_ExampleGazeteer_home. This variable
contains the path in which the component’s source and configuration files are and
its value is automatically set by Ellogon. Component developers should always use
the value of this variable in order to locate resources needed by the component,
that are stored in files or directories stored relatively to the location of the compo-
nent.

The procedures have always the form:
creole_{the name of the component}
creole_{the name of the component}_Initialize
creole_{the name of the component}_Finish

In our example, the procedures have the form:
creole_ExampleGazeteer
creole_ExampleGazeteer_Initialize
creole_ExampleGazeteer_Finish

From the names of the procedures, quite intuitively, you can understand what the
role of each one is. Sometimes, when you open a Collection, or a single Document,
you might want some initial job to be done as necessary preamble for the main job
you are going to perform to the Collection later. For example, you might want to
open some files and initialize some lists ad arrays, according to those files, or allo-
cate some memory, etc. Similarly, after you have done some job to the Collection,
you might want to write a piece of code which will perform a finalization to the
main code you have written. For example you might want to close some open files,
free the memory you allocated, etc.

Such initializations and finalizations are very common. Thus apart from the main
procedure, (creole_ExampleGazeteer in our example), we provide you with
two more procedures (creole_ExampleGazeteer_Initialize and cre-

ole_ExampleGazeteer_Finish in our example) which should contain the ini-
tializations and finalizations you might wish to have.

##
#
ExampleGazeteer.tcl - Thursday May 23 17:48:29 (GTB Daylight Time) 2002
This is a loosed coupled (Tcl) Module for use with
Ellogon, version 1.00...
#
##

Location of this module (ExampleGazeteer)
global creole_ExampleGazeteer_home

creole_ExampleGazeteer
#
proc creole_ExampleGazeteer {doc args} {

global creole_ExampleGazeteer_home
set current_dir [pwd]
cd $creole_ExampleGazeteer_home

Under Ellogon, the window that desplays the "wait" message can
additionally display a progress bar. In order to activate this feature,
you must execute the command "ggi_wait_update document percent"
In fact, if you enclose the command in a catch block, this module will
also run under GATE without problems. The second argument to the
ggi_wait_update procedure is the percent, which is in the range [0,100]
Setting percent a negative value causes the progress bar to disappear.
catch {ggi_wait_update $doc 0}

Put your code here...

record the fact that we ran and exit normally
cd $current_dir
tip_PutAttribute $doc [tip_CreateAttribute ExampleGazeteer \

[tip_CreateAttributeValue GDM_STRING {}]]
};# creole_ExampleGazeteer

Procedure: creole_ExampleGazeteer_Initialize
Use this function in order to do some initialization. This function will
be called just before creole_ExampleGazeteer in the following situations:
*) If the user has opened a whole Collection, this function will be
called just before the first document in Collection gets proccessed
with creole_ExampleGazeteer
*) If the user has opened a single Document, this function will be called
just before calling creole_ExampleGazeteer
Please, refer to the Ellogon's Programming Manual for more
information on this function...
proc creole_ExampleGazeteer_Initialize {col doc args} {

global creole_ExampleGazeteer_home
Do some initilization here...

};# creole_ExampleGazeteer_Initialize

Procedure: creole_ExampleGazeteer_Finish
Use this function in order to do some Clean-Up. This function will
be called after all calls to creole_ExampleGazeteer in the following
situations:
*) If the user has opened a whole Collection, this function will be
called just after the last document in Collection gets proccessed with
creole_ExampleGazeteer
*) If the user has opened a single Document, this function will be called
just after calling creole_ExampleGazeteer
Please, refer to the Ellogon's Programming Manual for more
information on this function...
proc creole_ExampleGazeteer_Finish {col doc args} {

global creole_ExampleGazeteer_home
Clean-Up...

};# creole_ExampleGazeteer_Finish

#
End of File
#

 10

Figure 2.3 The source file

 11

One thing that is very important to keep in mind, is that the initialization and final-
ization procedures are performed only once on the whole Collections, whereas the
finalization procedure is preformed on every Document of the Collection. In other
words, once you open a Collection and you begin to run a component (our exam-
ple component, lets say) the first procedure that will run (and only once) is the
creole_ExampleGazeteer_Initialize. Then, for every Document of the Collection
the creole_ExampleGazeteer will be called. Finally, after the whole Collection
has been processed, the creole_ExampleGazeteer_Finish will be called once,
in order to perform some finalization.

The above will become more concrete with an example, which is the topic of the
next chapter.

 12

3 Ellogon API through an
Example

In this chapter, we are going to cast an initial glance to the Ellogon API through an
example. In this example, we are going to see several essential procedures of the
Ellogon API. They are essential in the sense that those procedures are the most
commonly used. After we have gone through this example, you are going to be
able to write code for Ellogon components that will tackle a fairly big proportion of
common tasks. Note that you can get more help about the Ellogon API if you click
on the “Help Contents” of the “Help” menu in the Ellogon interface.

3.1 The Gazetteer Lookup
Before presenting you the code and going through it, we shall have to give you
more information concerning the component we are going to built and the Collec-
tion in which it is going to run.

What we are going to build is a very simple gazetteer lookup. In essence, a gazet-
teer is a list, or a collection of lists. Each list groups together several items belong-
ing to the same “category”. In our example the gazetteer contains information on
Named Entities. More specifically it contains two lists. The first list is a list of loca-
tions and the second list is a list of persons’ names. You can see the gazetteer in
Table 3.1. Actually, the files comprising the gazetteer were given as parameters to
the component (see the previous chapter).
gazloc.lst gazper.lst
Greece
France
Oklahoma
Paris
Corfu
Budapest
Rome
Madrid
Spain
Portugal
Germany

Berlin
Thessalonica
Mississippi
Missouri
California
Barcelona
Gibraltar
Aegean
Crete
Rhodes
Santorini

Emmanuel
Douglas
Daniel
Nicola
Maria
Vanessa

Table 3.1 The Gazetteer lists.

Chapter

3

 13

The Collection, upon which the component is going to run, consists of news docu-
ments written in English.

Our aim is to build a gazetteer lookup component which will locate all the in-
stances of the gazetteer’s elements and create an annotation of type lookup. Each
annotation will have an attribute type which will declare whether the instance
found in the corpus is a person or location. In other words, if an instance of an
item of the person list was found, the attribute will be like this:

type=person

In order to search for words in the corpus and compare them against the gazetteer,
we assume that the Collection has been previously processed by a tokenizer and a
sentence splitter. We also assume that a tokenizer is a component which takes a
Document and creates an annotation of type token for every token (word, punc-
tuation mark, etc) found in the Document. The code of the component, which
follows, presumes that this simple tokenizer has been run against the Collection, as
is indicated by the pre-conditions. Additionally, the sentence splitter component is
assumed to identify sentences and to create an Annotation of type “sentence” for
each identified sentence. All “sentence” Annotations must contain an Attribute
named “constituents” that should contain the Annotation Ids of all token Annota-
tions contained inside the corresponding sentence, ordered according to the way
they appear in the corpus.

3.2 The Code
The code of the component is presented in Figure 3.1, Figure 3.2 and Figure 3.3,
which contain the code for the initialization procedure, the main procedure and the
finalization procedure, respectively.
3.2.1 The Initialization Procedure

The initialization procedure is quite simple. In it we define two global variables
(creole_ExampleGazetteer_Location and creole_EaxampleGazeteerPerson) which will be
the arrays in which the contents of the lists will be placed. The lists are contained in
the files that were given as parameters to the component. Here you can see a con-
vention that we use in order to avoid conflicts when we define global variables. We
prefix each global variable with creole_{name of the module}_. Of course you
could create a namespace and use that instead of the prefix.

We place the three parameters, including the dummy Boolean parameter, inside
variables with the line

foreach {LocationList PersonList Boolean} $args {break}

The next step is to initialize the arrays. We open each file in turn, read its contents
and initialize the arrays by placing every line at the index of the array. We set the
contents of each element of the array to 0. When we are finished with each file, we
close it.

 14

3.2.2 The Finalization Procedure

The finalization procedure is even simpler than the initialization. In it we simply
delete the two arrays we created in the Initialization procedure, so that they will not
be in the memory any more.

Figure 3.1 The Initialization Procedure

3.2.3 The Main Procedure

The main procedure begins by declaring that the cre-

ole_ExampleGazetteer_Location and creole_ExampleGazetteer_Person
variables are global. In other words, the arrays used in the initialization procedure
will be used again.

The following lines:
ggi_wait_update $doc 0
set number_of_tokens [llength \
[tip_SelectAnnotationsSorted $doc token]]
set progress 0.0
set step [expr {100.0/($number_of_tokens+1)}]

are concerned with the appearance of a progress bar, which will be filled as more
tokens are being processed. The first line defines that progress bar. Then we get
the number of tokens, using the tip_SelectAnnotationsSorted. This procedure takes
two arguments. The first one is the current document ($doc) and the next one is
the type of annotations we want (“token”). It returns a new list object that will
contain all the Annotations of the specified Document that their type is the same
as the value of the type parameter (the “token” in our case). The annotations will
be sorted according to their first span range, in ascending order. We can have ac-
cess to the current document through the doc variable passed as an argument to
the main procedure. We get the number of annotations using the llength proce-
dure of Tcl. The progress variable indicates the progress thus far (0 for the mo-
ment). The step indicates how much the progress will be incremented every time
we process a token.

proc creole_ExampleGazetteer_Initialize {col doc args} {
global arrays that will contan the information from the gazeteers
global creole_ExampleGazetteer_Location
global creole_ExampleGazetteer_Person

Place parameters in variables...
foreach {LocationList PersonList Boolean} $args {break}

Initialize the arrays
set creole_ExampleGazetteer_GazLoc [open $LocationList]
while {[gets $creole_ExampleGazetteer_GazLoc line] >= 0} {

set creole_ExampleGazetteer_Location($line) 0
}
close $creole_ExampleGazetteer_GazLoc

set creole_ExampleGazetteer_GazPer [open $PersonList]
while {[gets $creole_ExampleGazetteer_GazPer line] >= 0} {

set creole_ExampleGazetteer_Person($line) 0
}
close $creole_ExampleGazetteer_GazPer

};# creole_ExampleGazetteer_Initialize

 15

The next step is to get the text of the Document that is being processed with the
procedure

tip_GetRawData

This procedure gets an argument which is the current Document of the Collection.

The next step is to get all the annotations of type “token” and iterate over all of
them comparing them against all the slots of our arrays and creating the appropri-
ate annotation, where appropriate. To get all the annotations of type “token”, we
use, as before, the following procedure

tip_SelectAnnotationsSorted

After that, we iterate over all the tokens contained in the sorted annotations that
we got. For every token, we get the value of the annotation. In other words we get
the text which corresponds to the annotation. In order to do so, we use the follow-
ing procedure

tip_GetFirstAnnotatedTextRange

This procedure takes two arguments. The first one is the text of the document,
which in our case is stored into the text variable, and the second argument is the
annotation object itself, which is stored into the token variable. As a result it re-
turns the text of the first span of the annotation.

Once we have taken that text and stored it into the tokenValue variable, we want
to check whether that text is the same with any of the slots of the arrays. In order
to examine that, we use the info exists procedure of Tcl to examine whether the
$tokenText exists as an index first to the creole_ExampleGazetteer_Location array and
then to the creole_ExampleGazetteer_Person array. If it exists we are trying to create a
new annotation (lookup), which will have the same span as the token annotation,
and will have the attribute “location” or “person”, according to the array in which
we found it.

In order to create the annotation we use the procedure
tip_CreateAnnotation

which takes three arguments. The first argument is the type of the annotation
(lookup in our case). The second argument is the spans of the annotation. The
third one is the attributes of the annotation.

The type of the annotation is lookup and it is simply a string. In order to set the
spans, we use the spans of the token annotation. We stored them previously in
the span variable using the procedure

tip_GetSpans

which takes as argument an annotation and returns the spans of the annotation.
We let the attributes empty. Instead we used the procedure

tip_CreateAttribute

 16

Location of this module (ExampleGazetteer)
global creole_ExampleGazetteer_home

creole_ExampleGazetteer
#
proc creole_ExampleGazetteer {doc args} {

global creole_ExampleGazetteer_Location creole_ExampleGazetteer_Person

Display a Progress bar...
ggi_wait_update $doc 0

set number_of_tokens [llength [tip_SelectAnnotationsSorted $doc token]]
set progress 0.0
set step [expr {100.0/($number_of_tokens+1)}]

Get the text of the document
set text [tip_GetRawData $doc]

Select all the annotations of type "token"
set tokens [tip_SelectAnnotations $doc "token"]

Iterate over all tokens
foreach token $tokens {

Get the text annotated by the first span of the token annotation...
set tokenText [tip_GetFirstAnnotatedTextRange $text $token]

Check whether the text matches any of the elements of the location
array

if {[info exists creole_ExampleGazetteer_Location($tokenText)]} {

... then get the spans of the token annotation ...
set spans [tip_GetSpans $token]

... create an annotation with no attributes ...
set locAnnotation [tip_CreateAnnotation "lookup" $spans {}]

... and then add an attribute to it ...
set attr [tip_CreateAttribute "type" \

[tip_CreateAttributeValue GDM_STRING "location"]]
... add the attribute into the annotation ...
set locAnnotation [tip_PutAttribute $locAnnotation $attr]

... finally, add the annotation to the document
tip_AddAnnotation $doc $locAnnotation

} elseif {[info exists creole_ExampleGazetteer_Person($tokenText)]} {

Repeat the same job for the person array...
set spans [tip_GetSpans $token]
... only that now we insert attributes immediatelly,
set attr [tip_CreateAttribute "type" \

[tip_CreateAttributeValue GDM_STRING "person"]]
set perAnnotation [tip_CreateAnnotation "lookup" $spans [list $attr]]

tip_AddAnnotation $doc $perAnnotation
}

Update the progress bar
set progress [expr {$progress+$step}]
catch {ggi_wait_update $doc $progress}

};# foreach token $tokens

Figure 3.2 The Main Procedure

 17

Figure 3.3 The Finalization Procedure

to create an attribute. This procedure takes as arguments the type of the attribute
(type in our case) and the value of the attribute. In order to create the attribute
value, we used the

tip_CreateAttributeValue

procedure which takes two arguments: an integer and a string. The integer is the
type of the attribute value, and in our case we used the constant

GDM_STRING

The string (i.e. the value of the attribute) is set to location or person, according
to the array in which we iterate.

Once the attribute is created, and stored in the attr variable, we use the
tip_PutAttribute

procedure to put that attribute into the annotation. This procedure takes two ar-
guments: the annotation and the created attribute. It returns a new annotation with
the attribute now added.

Finally, the annotation is created. The only thing left now is to put that annotation
into the Document. We accomplish this by the

tip_AddAnnotation

procedure. This one takes two arguments: the document that the annotation is go-
ing to be added in and the annotation itself.

Note that the same algorithm is used for both arrays. The only difference is that in
the case of the creole_ExampleGazetteer_Person array, we do not use the
tip_PutAttribute procedure, instead we insert the attribute immediately in the
tip_CreateAnnotation procedure, by using the expression [list $attr] instead of an
empty list that we used before.

The result is that new annotations of type NE have been created. You can see
them in Figure 3.4.

proc creole_ExampleGazetteer_Finish {col doc args} {

global creole_ExampleGazetteer_Location cre-
ole_ExampleGazetteer_Person

Remove our arrays from memory...
unset -nocomplain creole_ExampleGazetteer_Location \

creole_ExampleGazetteer_Person

};# creole_ExampleGazetteer_Finish

 18

Figure 3.4 The Created Annotations

Finally, we have added some more code, which does nothing essential to the algo-
rithm, just to show you some more procedures of the Ellogon API. You can see
that segment of code in Figure 3.5.

 19

Figure 3.5 The final segment of code for the main procedure of the component

In that segment of code, we are trying to create a file with a unique name in a tem-
porary folder, print the parameters in there, close the file and then delete it, since
we do not actually need it.

The unique file name is achieved by appending to creole_ExampleGazetteer_ the
process id, which we take from the operating system using the pid procedure. The
path of the temporary folder is returned from the Ellogon variable CDM_TempDir.

We put the contents of the parameters in variables by using the following code
foreach {LocationList PersonList Boolean} $args {break}

exactly as we did in the initialization procedure. Then we write each parameter in
the file along with a comment and close it. Finally we delete the file using the fol-
lowing code

file delete -force $TempFileName

Create a temporary file with a unique name write the parameters in
it...

global CDM_TempDir
Use file join to create the filename, in order to be platform in-

dependent.
set TempFileName [file join $CDM_TempDir cre-

ole_ExampleGazetteer_[pid]]
set TempFile [open $TempFileName w]

foreach {LocationList PersonList Boolean} $args {break}
puts $TempFile "Location List Parameter: $LocationList"
puts $TempFile "Person List Parameter: $PersonList"
puts $TempFile "Dummy Boolean Parameter: $Boolean"

close $TempFile

Now, delete the temporary file...
file delete -force $TempFileName

record the fact that we ran and exit normally
tip_PutAttribute $doc [tip_CreateAttribute ExampleGazetteer \

[tip_CreateAttributeValue GDM_STRING {}]]
};# creole_ExampleGazetteer

 20

4 Importing External
Components to Ellogon

Under the Ellogon platform you can not only write your own Components, but you
can import external components written in some other language. The general idea
behind importing external components is that an executable file needs some files as
input and writes its output in some other files; so, we only have to write a fragment
of code that will create the input files that the executable needs and use the output
files that it creates. Then we can do whatever job we want with the output files, e.g.
create some Ellogon annotations and place them inside the Collection.

4.1 A Part of Speech Tagger
Let us look at an example, so that the above will become clearer. In this example
we are going to import an executable file which is in fact a part of speech tagger
(POS tagger) which was written by Eric Brill in 1995 and was modified by George
Petasis in 1999.

This POS tagger is looking at each token in a sentence and it tries to identify what
part of speech this token is. In order to do so, it uses four additional files as input:

Bigrams, ContextualRules, FinalLexicon, LexicalRules

If no errors occur, this POS tagger creates a new file which contains the part of
speech for every token in the text.

Our aim is to prepare those input files for the POS tagger, execute it, and get the
output file. Then, we have to take the information contained inside that output file
and convert them into Ellogon annotations.

4.2 Importing External Components
The process of importing external components into Ellogon is quite easy. We begin
by creating a new component for Ellogon, exactly as we did in the example of the
previous chapter. Ellogon will create two files, the configuration file and the source

Chapter

4

 21

file. In our case we have named the component HBrill and you can see the con-
figuration file in Figure 4.1, and the source file in Figure 4.2.

#
HBrill/creole_config.tcl - configuration file
#
Saturday September 11 14:31:19 (EEST) 1999
#
$Id: template_config.tcl, Ellogon, version 1.0...
(Georgios Petasis, 23/11/1998), petasis@iit.demokritos.gr
$

set creole_config(HBrill) {
title {Greek POS Tagger}
pre_conditions
{

collection_attributes {}
document_attributes {language_english}
annotations {}

}
post_conditions
{

collection_attributes {}
document_attributes {HBrill}
annotations {{token pos}}

}
viewers
{

{token pos} single_span {Brill POS Tags...}
{token} raw {Raw Token}
$creole_HBrill_home/GreekTags.html text_file \

{Greek POS Tag Definitions}
}
parameters
{

{Lexicon} %FILE% \
"$creole_HBrill_home/greek/FinalLexicon"

{Bigrams} %FILE% "$creole_HBrill_home/greek/Bigrams"
{Lexical Rules} %FILE% \

"$creole_HBrill_home/greek/LexicalRules"
{Contextual Rules} %FILE% \

"$creole_HBrill_home/greek/ContextualRules"
{Additional Wordlist} {-w %FILE%} {}
{Intermediate output} {-i %FILE%} {}
{Process lines} {-s %NUMBER%} {}
{Start State Tagger only} -S {}

}
coupling dynamic
description

"This is the Greek Part-of-Speech Tagger \
(based on Brill Tagger).\n\
Author: Petasis Georgios, petasis@iit.demokritos.gr"

module_encoding iso8859-7
}

Compatibility Mode: Use 0 for Ellogon mode, 1 for GATE compatibility
mode...
set ::CDM::ComponentMode(creole_HBrill) 0

#
End of File
#

Figure 4.1 The configuration file

 22

In the configuration file, you can see that we have defined several values for the
pre-conditions and post-conditions, we have associated a single span and a raw
viewer, we have set as parameters the four files that the Component needs as input,
etc.

The only pre-condition that we have set is for the natural language of the Docu-
ments to be English, as can be seen by the lines

pre_conditions
{

collection_attributes {}
document_attributes {language_english}
annotations {}

}

Then, we have set two post conditions. The one concerns a document attribute
which states that the Document has been run against this module (HBrill) and the
second that two annotations will be added to the Documents of this Collection, the
token and pos annotations. Those are indicated by the lines

post_conditions
{

collection_attributes {}
document_attributes {HBrill}
annotations {{token pos}}

}

We have also associated two viewers, a raw and a single span viewer, as you can see
from the lines

viewers
{

{token pos} single_span {Brill POS Tags...}
{token} raw {Raw Token}
$creole_HBrill_home/GreekTags.html text_file \

{Greek POS Tag Definitions}
}

Furthermore, we have set several parameters, including the four files that are to be
the input to the external module, as is shown in the lines

parameters
{

{Lexicon} %FILE% \
"$creole_HBrill_home/greek/FinalLexicon"

{Bigrams} %FILE%
"$creole_HBrill_home/greek/Bigrams"

{Lexical Rules} %FILE% \
"$creole_HBrill_home/greek/LexicalRules"

{Contextual Rules} %FILE% \
"$creole_HBrill_home/greek/ContextualRules"

{Additional Wordlist} {-w %FILE%} {}
{Intermediate output} {-i %FILE%} {}
{Process lines} {-s %NUMBER%} {}
{Start State Tagger only} -S {}

}

The procedure for adding the above is exactly the same as the one we followed in
the example of the previous chapter.

 23

##
##
#
HBrill.tcl - Saturday September 11 14:31:19 (EEST) 1999
This is a loosed coupled (Tcl) Module for use with
Ellogon, version 1.0...
#
##
##

Location of this module (HBrill)
global creole_HBrill_home HBrill_tagger_home
set HBrill_tagger_home \

[file join $creole_HBrill_home RULE_BASED_TAGGER_V1.14 Bin_and_Data]

creole_HBrill
#
proc creole_HBrill {doc args} {

global creole_HBrill_home HBrill_tagger_home CDM_TempDir
set current_dir [pwd]
cd $creole_HBrill_home

Under Ellogon, the window that desplays the "wait" message can
additionally display a progress bar. In order to activate this
feature,you must execute the command "ggi_wait_update document
percent". In fact, if you enclose the command in a catch block,
this module will also run under GATE without problems. The second
argument to the ggi_wait_update procedure is the percent, which is
in the range [0,100] setting percent a negative value causes the
progress bar to disappear.
catch {ggi_wait_update $doc 0}

Create temporary file names...
if {![info exists CDM_TempDir]} {set CDM_TempDir /tmp}
set tmp_dump_fname [file join $CDM_TempDir HBrill_tmp[pid]_dump]
set tmp_read_fname [file join $CDM_TempDir HBrill_tmp[pid]_read]
set dev-null [file join $CDM_TempDir HBrill_tmp[pid]_delete]

The first four arguments are the needed files...
foreach {lexicon_file bigrams_file lexrule_file context_file} $args

{break}
if {![file readable $lexicon_file]} {

error "unreadable lexicon file parameter $lexicon_file: \
creole_HBrill"

}
if {![file readable $bigrams_file]} {

error "unreadable bigrams file parameter $bigrams_file: \
creole_HBrill"

}
if {![file readable $lexrule_file]} {

error "unreadable lexical rule file parameter $lexrule_file:\
creole_HBrill"

}
if {![file readable $context_file]} {

error "unreadable contextual rule file parameter $context_file:\
creole_HBrill"

}
set other_args [lrange $args 4 end]
foreach arg $other_args {

set flag [string range [lindex $arg 0] 1 end]
set value [lindex $arg 1]

 24

switch -exact -- $flag {
w {

if {![file readable $value]} {
error "unreadable wordlist file parameter $value: \

creole_HBrill"}
}
i {

if {[file exists $value]} {
if {![file writable $value]} {

error "unwritable intermediate file parameter $value:\
creole_HBrill"

}
} else {

if {![file writable [file dirname $value]]} {
error "unwritable directory for intermediate file parameter\

$value: creole_HBrill"
}

}
}
s {

if {$value < 100} {
error "too small value for process lines parameter $value:\

creole_HBrill"}
}
S {}
default {error "bad option parameter $flag: creole_HBrill"}

}
}

open file to use as input to external process
if {[catch {open $tmp_dump_fname w} tmp_dump]} {

error "Cannot open $tmp_dump_fname: $tmp_dump"
}
write out required info
creole_dump_HBrill_file $tmp_dump $doc
close $tmp_dump

call the external process

(HBrill needs to run in its own directory)
set current_dir [pwd]
cd $HBrill_tagger_home
(and needs its directory in the path as well, so use a subshell)
if {[catch {

eval exec tagger [list [file nativename $lexicon_file] \
[file nativename $tmp_dump_fname] \

[file nativename $bigrams_file] \
[file nativename $lexrule_file] \

[file nativename $context_file]] \
[join $other_args] > $tmp_read_fname 2> ${dev-null}} \
error]} {

(HBrill's exit status is garbage so ignore it, but report others)
global errorCode
catch [file delete -force ${dev-null}]
if {[lindex $errorCode 0] != "CHILDSTATUS"} {

error "HBrill exited abnormally: $error"
}

}
cd $current_dir
catch [file delete -force ${dev-null}]

open the external process's output file
if {[catch {open $tmp_read_fname r} tmp_read]} {

error ">>Cannot open $tmp_read_fname: $tmp_read"
}
parse and add info to the database
if {[catch {creole_read_HBrill_file $tmp_read $doc} error]} {

close $tmp_read
error $error

}
close $tmp_read
catch {ggi_wait_update $doc 100}

 25

delete tmp files
catch [file delete -force $tmp_dump_fname]
catch [file delete -force $tmp_read_fname]

record the fact that we ran and exit normally
cd $current_dir
tip_PutAttribute $doc [tip_CreateAttribute HBrill \

[tip_CreateAttributeValue GDM_STRING {}]]
return

} ;# creole_HBrill

creole_dump_HBrill_file
#
proc creole_dump_HBrill_file { dump_file doc } {

get text string
set ByteSequence [tip_GetByteSequence $doc]

find sentences
set SentenceAnns [tip_SelectAnnotations $doc sentence {}]
set items [llength $SentenceAnns]
if {!$items} {

error "creole_HBrill: No Sentence Annotations Found!"
}
set step [expr {33.0/$items}]
set progress $step

foreach sentence $SentenceAnns {
catch {ggi_wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_GetValueValue \

[tip_GetAttribute $sentence constituents]]
foreach token_id $constituents {

set token [tip_GetAnnotation $doc $token_id]
set span [lindex [tip_GetSpans $token] 0]
set start [tip_GetStart $span]
set end [tip_GetEnd $span]
set text [string range $ByteSequence $start [expr {$end - 1}]]
puts -nonewline $dump_file "$text "

}
puts $dump_file {};#newline

}
} ;# creole_dump_HBrill_file

creole_read_HBrill_file
#
proc creole_read_HBrill_file {read_file doc} {

find sentences
set SentenceAnns [tip_SelectAnnotations $doc sentence {}]
set items [llength $SentenceAnns]
if {!$items} {

error "creole_HBrill: No Sentence Annotations Found!"
}
set step [expr {33.0/$items}]
set progress [expr {66.0 + $step}]

 26

Figure 4.2 The Source Code

foreach sentence $SentenceAnns {
catch {ggi_wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_GetValueValue \

[tip_GetAttribute $sentence constituents]]
set line [gets $read_file]
if {[eof $read_file]} {break}
set line [split $line]
set TaggedTokens {}
foreach token $line {

if {[string length $token]} {lappend TaggedTokens $token}
}
foreach id $constituents TaggedToken $TaggedTokens {

set token [tip_GetAnnotation $doc $id]
get pos tag from tagger output
if {[regexp {.+/([^/]+)} $TaggedToken match tag]} {

create a new attribute
set attribute [tip_CreateAttribute pos \

[tip_CreateAttributeValue GDM_STRING $tag]]
add it to the current token annotation
set token [tip_PutAttribute $token $attribute]
add the annotation back to the doc
tip_AddAnnotation $doc $token

}
}

}
} ;# creole_read_HBrill_file

Procedure: creole_HBrill_Initialize
Use this function in order to do some initialization. This function
will be called just before creole_HBrill in the following
situations:
*) If the user has opened a whole Collection, this function will be
called just before the first document in Collection gets
proccessed with creole_HBrill
*) If the user has opened a single Document, this function will be
called
just before calling creole_HBrill
Please, refer to the Ellogon's Programming Manual for more
information on this function...
proc creole_HBrill_Initialize { col doc args } {

global creole_HBrill_home
Do some initilization here...

} ;# creole_HBrill_Initialize

Procedure: creole_HBrill_Finish
Use this function in order to do some Clean-Up. This function will
be called after all calls to creole_HBrill in the following
situations:
*) If the user has opened a whole Collection, this function will be
called just after the last document in Collection gets
proccessed with creole_HBrill
*) If the user has opened a single Document, this function will be
called just after calling creole_HBrill
Please, refer to the Ellogon's Programming Manual for more
information on this function...
proc creole_HBrill_Finish { col doc args } {

global creole_HBrill_home
Clean-Up...

} ;# creole_HBrill_Finish

#
End of File
#

 27

In the source file, we do nothing in the Initialization and Finish procedures. In the
main procedure we try to open the four files which are given as parameters to the
Component. If any errors occur we try to handle them. The handling of the errors
that might occur, is simply to issue an error message and terminate there the execu-
tion of the program. This is done in the lines which immediately follow those com-
ments

Create temporary file names...

The first four arguments are the needed files...

If everything goes well, that is all files open without any errors occurring, we open
the file for output, as indicated by the lines

open file to use as input to external process
if {[catch {open $tmp_dump_fname w} tmp_dump]} {

error "Cannot open $tmp_dump_fname: $tmp_dump"
}

As you can, again if an error occurs we issue an error message and terminate the
program.

Now, if no error has occurred, we call the external program tagger with those four
files as arguments and write to the output file the output of this external programm

Then we read the output file with the aid of the procedure
creole_read_HBrill_file

and then we close all the unnecessary files.

The creole_read_HBrill_file procedure, tries to convert the information in the
output file into legitimate Ellogon annotations, using similar procedures from the
Ellogon API as the ones mentioned in the previous chapter.

This procedure begins by saving all the sentence annotations in the sentenceAnns
variable, with the aid of the

tip_SelectAnnotations

procedure, which takes as arguments the document, the type of the annotation and
a list of constraints which are empty in our case. If there are actually no such anno-
tations, an error is issued, as indicated by the lines

if {!$items} {
error "creole_HBrill: No Sentence Annotations Found!"

}

If there are some annotations and no error occurs, we iterate through all the anno-
tations, i.e. all sentences, as shown from the lines which follow the statement

foreach sentence $SentenceAnns {

In this iteration we read each line of the output file and we try to identify which
tokens have been indeed tagged with a part of speech and which not. For all the
tagged tokens, we create a new annotation that contains the information about the
part of speech.

 28

In essence, this is how we import external modules into Ellogon components. We
have of course to know what input they need, what their output is and how to han-
dle it.

 29

5 Further Information
about the Ellogon API

Ellogon has its own site which we invite you to visit at
http://www.iit.demokritos.gr/skel/Ellogon/

This site contains, apart from this manual, also the Users’ Guide to Ellogon and the
Ellogon’s Components Specification.

Furthermore, you can get more help about the Ellogon API if you click on the
“Help Contents” of the “Help” menu in the Ellogon interface.

Chapter

5

http://www.iit.demokritos.gr/skel/Ellogon/

	Introduction
	What is Ellogon?
	Essential Ingredients
	What follows
	Acknowledgments

	Components’ Files
	Creating a component
	Components’ files
	The configuration file
	The source file

	Ellogon API through an Example
	The Gazetteer Lookup
	The Code
	The Initialization Procedure
	The Finalization Procedure
	The Main Procedure

	Importing External Components to Ellogon
	A Part of Speech Tagger
	Importing External Components

	Further Information about the Ellogon API

