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1 Introduction 

Natural Language Processing (NLP) emerged as a mixed field of Computational 
Linguistics and Artificial Intelligence, during the 1950’s. Since then there is a con-
stant outburst of interest, not only from people involved in academic research, but 
also from companies involved in the production and commercial exploitation of 
language engineering systems. 

What all those people have in common is the need for a tool that will assist them 
on their research. Here, in the SKEL laboratory of the NCSR "Demokritos", we 
have developed Ellogon, a multi-lingual, cross-platform text-engineering environ-
ment developed exactly to aid people who are doing research in Computational 
Linguistics, as well as companies which produce and deliver language engineering 
systems. Ellogon was developed in an attempt to create the necessary infrastructure 
to facilitate the development and distribution of various NLP tools. 

1.1 What is Ellogon? 
Before proceeding with what the Ellogon platform is, we would like to tell some 
words about what Ellogon, as a word, means and how come we chose that particular 
name. Ellogon (Ελλογον) is composed from the ancient Greek words εν + λόγος, 
which taken together mean “in accordance with logic”. The Ellogon platform is actu-
ally in accordance with the logic, the logic that lurks underneath each writer of a 
text, and helps scientists, working in the area of NLP, exploit that logic and make 
bare all the information that lie inside a passage. But there is more to the story. 
“Logos”, furthermore, can be translated as oration, talk, utterance or written 
speech. We chose to name our platform Ellogon because it deals with texts, written 
speeches or passages in other words, and makes the information that lie inside such 
passages emerge. 

Had we to describe the Ellogon platform within a few words, we could say that El-
logon is a general-purpose text-engineering platform. The word “platform” was empha-
sized here, in order to show that Ellogon is simply an environment and as such, it 
does not claim to perform any sort of linguistic processing. This is done with the 
use of external embeddable components, which may be written either in Tcl/Tk or 
in C/C++.  
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In another manual, the User Guide to Ellogon, we described the process of creating 
such components, but didn’t delve into the details of how to write code using the 
API of Ellogon. The purpose of this manual is to do exactly that. That is, to explain 
in detail the Ellogon API.  

1.2 Essential Ingredients 
Before proceeding with the details that will enable one to create, test and debug 
components on Ellogon, there are some things that one has to know and have some 
experience with them, in order for this manual to be comprehensive. 

The best introduction to the Ellogon is the User Guide to Ellogon. The potential de-
veloper of components for Ellogon ought to have read that manual and have some 
experience with the Ellogon through the components that someone else has written, 
or through the components that are provided with the standard edition of Ellogon. 
If this sounds too much, one ought to have acquired an understanding, at least, of 
the Data Model of Ellogon, described in Chapter 2 of the User Guide to Ellogon. Some 
understanding of the details described in Chapter 3 “Working with Ellogon” is also 
needed. 

If you have already read that manual, then you will know that the core of Ellogon, 
the Collection and Document Manager (CDM), is written in C++ and that linguistic 
processing is done with the use of external embeddable components, which may 
be written either in Tcl/Tk or in C/C++. Thus a basic requirement for writing 
components in Ellogon is to know very well either Tcl/Tk or C/C++ or even, pref-
erably, both. In this manual we shall take for granted that you are an experienced 
programmer in Tcl/Tk and C/C++.  

1.3 What follows 
Apart from this introductory chapter, this manual contains three more chapters. In 
the second chapter we shall freshen up your memory on how to create a compo-
nent. The main discussion of that chapter will be the files that the Ellogon creates 
for the component, and the procedures that those files contain. 

In the third chapter, we shall take a first look on the Ellogon API through an exam-
ple. The example will be the construction of a simple gazetteer lookup.  

In the last chapter, we are going to describe the process of importing external ex-
ecutable programs into Ellogon Components. 

Note that in this preliminary draft version of the Developers’ Guide to Ellogon we shall 
limit ourselves to Tcl. In the following versions of this manual, our discussion will 
be expanded so that it will also include C/C++. 
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2 Components’ Files 

In Chapter 3 of the User Guide to Ellogon, and in particular in sections 3.6 and 3.7, 
we described how to create and modify components. We presume that you are 
already acquainted with those sections. In this chapter, we shall refresh your mem-
ory on how to create components, and then we shall describe the files that Ellogon 
creates and the procedures that they contain.  

2.1 Creating a component 
In the Ellogon main window, select Create New Module from the Module 
menu. In the dialog box that opens, define a name for the component and set the 
various parameters, such as the pre-conditions, post-conditions and the various 
viewers that will be attached to the component.  

For the purpose of the example that will follow in the next chapter we shall simply 
set the name of the component as ExampleGazeteer3 and the component’s 
title will be set to “Example Gazeteer”. No pre-conditions or post-conditions will 
be set. Also, we will not associate any viewer with the component.  

When you have finished push the “Save” button on the dialog. (See also Figure 2.1)  

2.2 Components’ files 
Once you have pushed the “Save” button, Ellogon will create a new folder in the 
directory you have specified, which will have the same name as the component 
name. In the case we have a windows system, that folder will be the following: 

C:\modules\ExampleGazeteer

In case we have a UNIX system, that folder will be 
~/modules/ExampleGazeteer

where the ~ represents your home directory. 

                                                                          

3 Components’ names do not contain spaces and some other characters such as ( ; , : . - ) In general valid 
component names are valid names of C++ functions. See also Section 3.6 of the User’s Guide to Ellogon.  
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Figure 2.1 Creating a new component 

2.2.1 The configuration file 

In that directory two fresh files will be created.  The first one will always be called 
creole_config.tcl and you can see it in Figure 2.2.  

As you can see, this file contains several pieces of information. In summary, the 
information that this file contains are the following: 

• Title:  
It contains the title of the component. In our example it is the line:  
title {Example Gazeteer}  

• Pre-conditions:  
It contains information about the collection and document attributes and 
the annotations that must exist as pre-conditions. These pre-conditions 
must be satisfied in order for the component to be able to execute cor-
rectly. In our example we set no pre-conditions for the Collection and 
Document attributes, but we set pre-conditions for the annotations that 
the Collection should contain. The line annotations {{token type}} indi-
cates that the Documents of the Collection should contain annotations 
“token” with the attribute “type”. 

• Post-conditions:  
Similarly, post-conditions contain information about the collection and 
document attributes and the annotations that will be added when the 
component is executed. In our example no Collection attributes will be 
added when the module finishes processing, but the Documents will get 
the attribute “ExampleGazeteer”. The line annotations {lookup {lookup

type}} indicates that when the module finishes processing the Documents 
will contain “lookup” annotations with attribute “type”. 
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• Viewers  
It contains information about the viewers (such as the single-span or the 
raw text viewer) that are associated with the component. These viewers can 
be easily accessible through a special menu offered by Ellogon GUI when 
the component has been executed. That menu appears if you click on the 
component once it has finished processing. In our example we have asso-
ciated four viewers with that component. The line {lookup type} sin-

gle_span {Lookup Annotations...} indicates that a single span viewer will be 
associated with the component which will contain the “lookup” annota-
tions with attribute “type” and will be labelled “Lookup Annotations …”. 
Similarly for the line {token type} single_span {Token Annotations...}. The 
line {lookup} raw {Raw Lookup Annotations...} is instructing Ellogon to asso-
ciate a raw viewer with the component, which will show the “lookup” an-
notations and it will be labelled “Raw Lookup Annotations”. Finally the 
line {token} AnnotationExplorer {Explore Annotations...} will associate an 
Annotation Explorer viewer that will contain the “token” annotations and 
iyt will be labelled “Explore Annotations…”. 

• Parameters 
Information concerning the parameters (see section 3.6.3 of the User Guide 
to Ellogon) is stored here. In our case we have set three parameters for the 
example component that we have created. The first two are two files which 
contain the lists that comprise the gazetteer. The lines {Location List}

%FILE% {$creole_ExampleGazetteer_home/gazloc.lst} and {Person List}

%FILE% {$creole_ExampleGazetteer_home/gazper.lst} indicate that two vari-
ables {Location List} and {Person List} will contain the paths for the loca-
tion and person file respectively (see Table 3.1). The variable 
$creole_ExampleGazetteer_home contains the path of the component. The 
third parameter {Dummy Boolean Parameter} 0 {} contains simply a dummy 
Boolean parameter that serves no actual purpose but only to show you 
how to define Boolean parameters. It is set to 0 so the checkbox will ap-
pear unchecked. 

• Language 
It contains the information about the programming language in which the 
component is written. In our example, coupling loose means that the 
component is written in Tcl. 

• Description 
A small description of the component, as given in the dialog box, is con-
tained herein. (see Figure 2.1) 

• Compatibility-Mode 
This variable declares the compatibility mode under which this component 
should be executed. Currently, two compatibility modes are available: El-
logon’s native mode (value 0) and GATE 1 compatibility mode (value 1). 
Available values may be increased in future versions of Ellogon, if addi-
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tional compatibility modes are supported. In our example, the component 
will not use any compatibility mode, as it is an Ellogon native component. 

 
 
 
 

 

The above information was placed to the configuration file according to the speci-
fications we have given on the dialog box depicted in Figure 2.1. In case you want 
later to change something (e.g. a pre-condition) you shall have to manually enter the 
changes into the creole_config.tcl file. Generally, that is not recommended, unless 
of course you are an expert Ellogon user and developer. 

#
# ExampleGazetteer/creole_config.tcl - configuration file
#
# Tuesday June 11 14:42:10 (EEST) 2002
#
# $Id: template_config.tcl, Ellogon, version 1.0...
# (Georgios Petasis, 23/11/1998), petasis@iit.demokritos.gr
$

set creole_config(ExampleGazetteer) \
{

title {Example Gazetteer}
pre_conditions
{

collection_attributes {}
document_attributes {}
annotations {{token type}}

}
post_conditions
{

collection_attributes {}
document_attributes {ExampleGazetteer}
annotations {lookup {lookup type}}

}
viewers
{

{lookup type} single_span {Lookup Annotations...}
{token type} single_span {Token Annotations...}
{lookup} raw {Raw Lookup Annotations...}
{token} AnnotationExplorer {Explore Annotations...}

}
parameters
{

{Location List} %FILE% {$creole_ExampleGazetteer_home/gazloc.lst}
{Person List} %FILE% {$creole_ExampleGazetteer_home/gazper.lst}
{Dummy Boolean Parameter} 0 {}

}
coupling loose
description {Author: stergos, Tue Jun 11 14:28:06 EEST 2002}
module_encoding iso8859-7

};# ExampleGazetteer

## Compatibility Mode: Use 0 for Ellogon mode.
set ::CDM::ComponentMode(creole_ExampleGazetteer) 0

#
# End of File
#

Figure 2.2 The creole_config.tcl file 
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2.2.2 The source file 

The other file that is created by Ellogon is the source file, in which our source code, 
that will perform a specific job, will be placed. You can see that file in Figure 2.3. 
The name of that file is the name of the component that we gave in the dialog box 
depicted in Figure 2.1 with the “.tcl” extension. 

As you can see, this file contains three procedures and defines a variable. The vari-
able always has the form: 

creole_{the name of the component}_home

In our example that variable is the creole_ExampleGazeteer_home. This variable 
contains the path in which the component’s source and configuration files are and 
its value is automatically set by Ellogon. Component developers should always use 
the value of this variable in order to locate resources needed by the component, 
that are stored in files or directories stored relatively to the location of the compo-
nent. 

The procedures have always the form: 
creole_{the name of the component}
creole_{the name of the component}_Initialize
creole_{the name of the component}_Finish

In our example, the procedures have the form: 
creole_ExampleGazeteer
creole_ExampleGazeteer_Initialize
creole_ExampleGazeteer_Finish

From the names of the procedures, quite intuitively, you can understand what the 
role of each one is. Sometimes, when you open a Collection, or a single Document, 
you might want some initial job to be done as necessary preamble for the main job 
you are going to perform to the Collection later. For example, you might want to 
open some files and initialize some lists ad arrays, according to those files, or allo-
cate some memory, etc. Similarly, after you have done some job to the Collection, 
you might want to write a piece of code which will perform a finalization to the 
main code you have written. For example you might want to close some open files, 
free the memory you allocated, etc. 

Such initializations and finalizations are very common. Thus apart from the main 
procedure, (creole_ExampleGazeteer in our example), we provide you with 
two more procedures (creole_ExampleGazeteer_Initialize and cre-

ole_ExampleGazeteer_Finish in our example) which should contain the ini-
tializations and finalizations you might wish to have.

 

 



 
##########################################################################
#
# ExampleGazeteer.tcl - Thursday May 23 17:48:29 (GTB Daylight Time) 2002
# This is a loosed coupled (Tcl) Module for use with
# Ellogon, version 1.00...
#
##########################################################################

# Location of this module (ExampleGazeteer)
global creole_ExampleGazeteer_home

## creole_ExampleGazeteer
#
proc creole_ExampleGazeteer {doc args} {

global creole_ExampleGazeteer_home
set current_dir [pwd]
cd $creole_ExampleGazeteer_home

## Under Ellogon, the window that desplays the "wait" message can
## additionally display a progress bar. In order to activate this feature,
## you must execute the command "ggi_wait_update document percent"
## In fact, if you enclose the command in a catch block, this module will
## also run under GATE without problems. The second argument to the
## ggi_wait_update procedure is the percent, which is in the range [0,100]
## Setting percent a negative value causes the progress bar to disappear.
## catch {ggi_wait_update $doc 0}

## Put your code here...

# record the fact that we ran and exit normally
cd $current_dir
tip_PutAttribute $doc [tip_CreateAttribute ExampleGazeteer \

[tip_CreateAttributeValue GDM_STRING {}]]
};# creole_ExampleGazeteer

## Procedure: creole_ExampleGazeteer_Initialize
# Use this function in order to do some initialization. This function will
# be called just before creole_ExampleGazeteer in the following situations:
# *) If the user has opened a whole Collection, this function will be
# called just before the first document in Collection gets proccessed
# with creole_ExampleGazeteer
# *) If the user has opened a single Document, this function will be called
# just before calling creole_ExampleGazeteer
# Please, refer to the Ellogon's Programming Manual for more
# information on this function...
proc creole_ExampleGazeteer_Initialize {col doc args} {

global creole_ExampleGazeteer_home
## Do some initilization here...

};# creole_ExampleGazeteer_Initialize

## Procedure: creole_ExampleGazeteer_Finish
# Use this function in order to do some Clean-Up. This function will
# be called after all calls to creole_ExampleGazeteer in the following
# situations:
# *) If the user has opened a whole Collection, this function will be
# called just after the last document in Collection gets proccessed with
# creole_ExampleGazeteer
# *) If the user has opened a single Document, this function will be called
# just after calling creole_ExampleGazeteer
# Please, refer to the Ellogon's Programming Manual for more
# information on this function...
proc creole_ExampleGazeteer_Finish {col doc args} {

global creole_ExampleGazeteer_home
## Clean-Up...

};# creole_ExampleGazeteer_Finish

#
# End of File
#

 10

Figure 2.3 The source file 



 

 11

One thing that is very important to keep in mind, is that the initialization and final-
ization procedures are performed only once on the whole Collections, whereas the 
finalization procedure is preformed on every Document of the Collection. In other 
words, once you open a Collection and you begin to run a component (our exam-
ple component, lets say) the first procedure that will run (and only once) is the 
creole_ExampleGazeteer_Initialize. Then, for every Document of the Collection 
the creole_ExampleGazeteer will be called. Finally, after the whole Collection 
has been processed, the creole_ExampleGazeteer_Finish will be called once, 
in order to perform some finalization. 

The above will become more concrete with an example, which is the topic of the 
next chapter. 
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3 Ellogon API through an 
Example  

In this chapter, we are going to cast an initial glance to the Ellogon API through an 
example. In this example, we are going to see several essential procedures of the 
Ellogon API. They are essential in the sense that those procedures are the most 
commonly used. After we have gone through this example, you are going to be 
able to write code for Ellogon components that will tackle a fairly big proportion of 
common tasks. Note that you can get more help about the Ellogon API if you click 
on the “Help Contents” of the “Help” menu in the Ellogon interface. 

3.1 The Gazetteer Lookup 
Before presenting you the code and going through it, we shall have to give you 
more information concerning the component we are going to built and the Collec-
tion in which it is going to run.  

What we are going to build is a very simple gazetteer lookup. In essence, a gazet-
teer is a list, or a collection of lists. Each list groups together several items belong-
ing to the same “category”. In our example the gazetteer contains information on 
Named Entities. More specifically it contains two lists. The first list is a list of loca-
tions and the second list is a list of persons’ names. You can see the gazetteer in 
Table 3.1. Actually, the files comprising the gazetteer were given as parameters to 
the component (see the previous chapter).  
gazloc.lst gazper.lst
Greece
France
Oklahoma
Paris
Corfu
Budapest
Rome
Madrid
Spain
Portugal
Germany

Berlin
Thessalonica
Mississippi
Missouri
California
Barcelona
Gibraltar
Aegean
Crete
Rhodes
Santorini

Emmanuel
Douglas
Daniel
Nicola
Maria
Vanessa
 

Table 3.1 The Gazetteer lists. 

Chapter
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The Collection, upon which the component is going to run, consists of news docu-
ments written in English.  

Our aim is to build a gazetteer lookup component which will locate all the in-
stances of the gazetteer’s elements and create an annotation of type lookup. Each 
annotation will have an attribute type which will declare whether the instance 
found in the corpus is a person or location. In other words, if an instance of an 
item of the person list was found, the attribute will be like this: 

type=person

In order to search for words in the corpus and compare them against the gazetteer, 
we assume that the Collection has been previously processed by a tokenizer and a 
sentence splitter. We also assume that a tokenizer is a component which takes a 
Document and creates an annotation of type token for every token (word, punc-
tuation mark, etc) found in the Document. The code of the component, which 
follows, presumes that this simple tokenizer has been run against the Collection, as 
is indicated by the pre-conditions. Additionally, the sentence splitter component is 
assumed to identify sentences and to create an Annotation of type “sentence” for 
each identified sentence. All “sentence” Annotations must contain an Attribute 
named “constituents” that should contain the Annotation Ids of all token Annota-
tions contained inside the corresponding sentence, ordered according to the way 
they appear in the corpus. 

3.2 The Code 
The code of the component is presented in Figure 3.1, Figure 3.2 and Figure 3.3, 
which contain the code for the initialization procedure, the main procedure and the 
finalization procedure, respectively. 
3.2.1 The Initialization Procedure 

The initialization procedure is quite simple. In it we define two global variables 
(creole_ExampleGazetteer_Location and creole_EaxampleGazeteerPerson) which will be 
the arrays in which the contents of the lists will be placed. The lists are contained in 
the files that were given as parameters to the component. Here you can see a con-
vention that we use in order to avoid conflicts when we define global variables. We 
prefix each global variable with creole_{name of the module}_. Of course you 
could create a namespace and use that instead of the prefix. 

We place the three parameters, including the dummy Boolean parameter, inside 
variables with the line 

foreach {LocationList PersonList Boolean} $args {break}

The next step is to initialize the arrays. We open each file in turn, read its contents 
and initialize the arrays by placing every line at the index of the array. We set the 
contents of each element of the array to 0. When we are finished with each file, we 
close it. 
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3.2.2 The Finalization Procedure 

The finalization procedure is even simpler than the initialization. In it we simply 
delete the two arrays we created in the Initialization procedure, so that they will not 
be in the memory any more. 

 
Figure 3.1 The Initialization Procedure 

3.2.3 The Main Procedure 

The main procedure begins by declaring that the cre-

ole_ExampleGazetteer_Location and creole_ExampleGazetteer_Person 
variables are global. In other words, the arrays used in the initialization procedure 
will be used again.  

The following lines: 
ggi_wait_update $doc 0
set number_of_tokens [llength \
[tip_SelectAnnotationsSorted $doc token]]
set progress 0.0
set step [expr {100.0/($number_of_tokens+1)}]

are concerned with the appearance of a progress bar, which will be filled as more 
tokens are being processed. The first line defines that progress bar. Then we get 
the number of tokens, using the tip_SelectAnnotationsSorted. This procedure takes 
two arguments. The first one is the current document ($doc) and the next one is 
the type of annotations we want (“token”). It returns a new list object that will 
contain all the Annotations of the specified Document that their type is the same 
as the value of the type parameter (the “token” in our case). The annotations will 
be sorted according to their first span range, in ascending order. We can have ac-
cess to the current document through the doc variable passed as an argument to 
the main procedure. We get the number of annotations using the llength proce-
dure of Tcl. The progress variable indicates the progress thus far (0 for the mo-
ment). The step indicates how much the progress will be incremented every time 
we process a token.  

proc creole_ExampleGazetteer_Initialize {col doc args} {
# global arrays that will contan the information from the gazeteers
global creole_ExampleGazetteer_Location
global creole_ExampleGazetteer_Person

# Place parameters in variables...
foreach {LocationList PersonList Boolean} $args {break}

# Initialize the arrays
set creole_ExampleGazetteer_GazLoc [open $LocationList]
while {[gets $creole_ExampleGazetteer_GazLoc line] >= 0} {

set creole_ExampleGazetteer_Location($line) 0
}
close $creole_ExampleGazetteer_GazLoc

set creole_ExampleGazetteer_GazPer [open $PersonList]
while {[gets $creole_ExampleGazetteer_GazPer line] >= 0} {

set creole_ExampleGazetteer_Person($line) 0
}
close $creole_ExampleGazetteer_GazPer

};# creole_ExampleGazetteer_Initialize
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The next step is to get the text of the Document that is being processed with the 
procedure 

tip_GetRawData

This procedure gets an argument which is the current Document of the Collection.  

The next step is to get all the annotations of type “token” and iterate over all of 
them comparing them against all the slots of our arrays and creating the appropri-
ate annotation, where appropriate. To get all the annotations of type “token”, we 
use, as before, the following procedure 

tip_SelectAnnotationsSorted

After that, we iterate over all the tokens contained in the sorted annotations that 
we got. For every token, we get the value of the annotation. In other words we get 
the text which corresponds to the annotation. In order to do so, we use the follow-
ing procedure  

tip_GetFirstAnnotatedTextRange

This procedure takes two arguments. The first one is the text of the document, 
which in our case is stored into the text variable, and the second argument is the 
annotation object itself, which is stored into the token variable. As a result it re-
turns the text of the first span of the annotation. 

Once we have taken that text and stored it into the tokenValue variable, we want 
to check whether that text is the same with any of the slots of the arrays. In order 
to examine that, we use the info exists procedure of Tcl to examine whether the 
$tokenText exists as an index first to the creole_ExampleGazetteer_Location array and 
then to the creole_ExampleGazetteer_Person array. If it exists we are trying to create a 
new annotation (lookup), which will have the same span as the token annotation, 
and will have the attribute “location” or “person”, according to the array in which 
we found it.  

In order to create the annotation we use the procedure 
tip_CreateAnnotation

which takes three arguments. The first argument is the type of the annotation 
(lookup in our case). The second argument is the spans of the annotation. The 
third one is the attributes of the annotation.   

The type of the annotation is lookup and it is simply a string. In order to set the 
spans, we use the spans of the token annotation. We stored them previously in 
the span variable using the procedure  

tip_GetSpans

which takes as argument an annotation and returns the spans of the annotation. 
We let the attributes empty. Instead we used the procedure  

tip_CreateAttribute
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# Location of this module (ExampleGazetteer)
global creole_ExampleGazetteer_home

## creole_ExampleGazetteer
#
proc creole_ExampleGazetteer {doc args} {

global creole_ExampleGazetteer_Location creole_ExampleGazetteer_Person

## Display a Progress bar...
ggi_wait_update $doc 0

set number_of_tokens [llength [tip_SelectAnnotationsSorted $doc token]]
set progress 0.0
set step [expr {100.0/($number_of_tokens+1)}]

# Get the text of the document
set text [tip_GetRawData $doc]

# Select all the annotations of type "token"
set tokens [tip_SelectAnnotations $doc "token"]

# Iterate over all tokens
foreach token $tokens {

# Get the text annotated by the first span of the token annotation...
set tokenText [tip_GetFirstAnnotatedTextRange $text $token]

# Check whether the text matches any of the elements of the location
array

if {[info exists creole_ExampleGazetteer_Location($tokenText)]} {

# ... then get the spans of the token annotation ...
set spans [tip_GetSpans $token]

# ... create an annotation with no attributes ...
set locAnnotation [tip_CreateAnnotation "lookup" $spans {}]

# ... and then add an attribute to it ...
set attr [tip_CreateAttribute "type" \

[tip_CreateAttributeValue GDM_STRING "location"]]
# ... add the attribute into the annotation ...
set locAnnotation [tip_PutAttribute $locAnnotation $attr]

# ... finally, add the annotation to the document
tip_AddAnnotation $doc $locAnnotation

} elseif {[info exists creole_ExampleGazetteer_Person($tokenText)]} {

# Repeat the same job for the person array...
set spans [tip_GetSpans $token]
# ... only that now we insert attributes immediatelly,
set attr [tip_CreateAttribute "type" \

[tip_CreateAttributeValue GDM_STRING "person"]]
set perAnnotation [tip_CreateAnnotation "lookup" $spans [list $attr]]

tip_AddAnnotation $doc $perAnnotation
}

# Update the progress bar
set progress [expr {$progress+$step}]
catch {ggi_wait_update $doc $progress}

};# foreach token $tokens

Figure 3.2 The Main Procedure 



 

 17

 

 

 
Figure 3.3 The Finalization Procedure 

to create an attribute. This procedure takes as arguments the type of the attribute 
(type in our case) and the value of the attribute. In order to create the attribute 
value, we used the  

tip_CreateAttributeValue

procedure which takes two arguments: an integer and a string. The integer is the 
type of the attribute value, and in our case we used the constant 

GDM_STRING

The string (i.e. the value of the attribute) is set to location or person, according 
to the array in which we iterate. 

Once the attribute is created, and stored in the attr variable, we use the  
tip_PutAttribute

procedure to put that attribute into the annotation. This procedure takes two ar-
guments: the annotation and the created attribute. It returns a new annotation with 
the attribute now added. 

Finally, the annotation is created. The only thing left now is to put that annotation 
into the Document. We accomplish this by the  

tip_AddAnnotation

procedure. This one takes two arguments: the document that the annotation is go-
ing to be added in and the annotation itself. 

Note that the same algorithm is used for both arrays. The only difference is that in 
the case of the creole_ExampleGazetteer_Person array, we do not use the 
tip_PutAttribute procedure, instead we insert the attribute immediately in the 
tip_CreateAnnotation procedure, by using the expression [list $attr] instead of an 
empty list that we used before. 

The result is that new annotations of type NE have been created. You can see 
them in Figure 3.4. 

proc creole_ExampleGazetteer_Finish {col doc args} {

global creole_ExampleGazetteer_Location cre-
ole_ExampleGazetteer_Person

# Remove our arrays from memory...
unset -nocomplain creole_ExampleGazetteer_Location \

creole_ExampleGazetteer_Person

};# creole_ExampleGazetteer_Finish
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Figure 3.4 The Created Annotations 

Finally, we have added some more code, which does nothing essential to the algo-
rithm, just to show you some more procedures of the Ellogon API. You can see 
that segment of code in Figure 3.5. 
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Figure 3.5 The final segment of code for the main procedure of the component 

In that segment of code, we are trying to create a file with a unique name in a tem-
porary folder, print the parameters in there, close the file and then delete it, since 
we do not actually need it.  

The unique file name is achieved by appending to creole_ExampleGazetteer_ the 
process id, which we take from the operating system using the pid procedure. The 
path of the temporary folder is returned from the Ellogon variable CDM_TempDir.  

We put the contents of the parameters in variables by using the following code 
foreach {LocationList PersonList Boolean} $args {break}

exactly as we did in the initialization procedure. Then we write each parameter in 
the file along with a comment and close it. Finally we delete the file using the fol-
lowing code 

file delete -force $TempFileName

# Create a temporary file with a unique name write the parameters in
it...

global CDM_TempDir
# Use file join to create the filename, in order to be platform in-

dependent.
set TempFileName [file join $CDM_TempDir cre-

ole_ExampleGazetteer_[pid]]
set TempFile [open $TempFileName w]

foreach {LocationList PersonList Boolean} $args {break}
puts $TempFile "Location List Parameter: $LocationList"
puts $TempFile "Person List Parameter: $PersonList"
puts $TempFile "Dummy Boolean Parameter: $Boolean"

close $TempFile

# Now, delete the temporary file...
file delete -force $TempFileName

# record the fact that we ran and exit normally
tip_PutAttribute $doc [tip_CreateAttribute ExampleGazetteer \

[tip_CreateAttributeValue GDM_STRING {}]]
};# creole_ExampleGazetteer
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4 Importing External 
Components to Ellogon 

Under the Ellogon platform you can not only write your own Components, but you 
can import external components written in some other language. The general idea 
behind importing external components is that an executable file needs some files as 
input and writes its output in some other files; so, we only have to write a fragment 
of code that will create the input files that the executable needs and use the output 
files that it creates. Then we can do whatever job we want with the output files, e.g. 
create some Ellogon annotations and place them inside the Collection. 

4.1 A Part of Speech Tagger 
Let us look at an example, so that the above will become clearer. In this example 
we are going to import an executable file which is in fact a part of speech tagger 
(POS tagger) which was written by Eric Brill in 1995 and was modified by George 
Petasis in 1999.  

This POS tagger is looking at each token in a sentence and it tries to identify what 
part of speech this token is. In order to do so, it uses four additional files as input: 

Bigrams, ContextualRules, FinalLexicon, LexicalRules 

If no errors occur, this POS tagger creates a new file which contains the part of 
speech for every token in the text. 

Our aim is to prepare those input files for the POS tagger, execute it, and get the 
output file. Then, we have to take the information contained inside that output file 
and convert them into Ellogon annotations.  

4.2 Importing External Components 
The process of importing external components into Ellogon is quite easy. We begin 
by creating a new component for Ellogon, exactly as we did in the example of the 
previous chapter. Ellogon will create two files, the configuration file and the source 
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file. In our case we have named the component HBrill and you can see the con-
figuration file in Figure 4.1, and the source file in Figure 4.2. 

 

 

 

#
# HBrill/creole_config.tcl - configuration file
#
# Saturday September 11 14:31:19 (EEST) 1999
#
# $Id: template_config.tcl, Ellogon, version 1.0...
# (Georgios Petasis, 23/11/1998), petasis@iit.demokritos.gr
$

set creole_config(HBrill) {
title {Greek POS Tagger}
pre_conditions
{

collection_attributes {}
document_attributes {language_english}
annotations {}

}
post_conditions
{

collection_attributes {}
document_attributes {HBrill}
annotations {{token pos}}

}
viewers
{

{token pos} single_span {Brill POS Tags...}
{token} raw {Raw Token}
$creole_HBrill_home/GreekTags.html text_file \

{Greek POS Tag Definitions}
}
parameters
{

{Lexicon} %FILE% \
"$creole_HBrill_home/greek/FinalLexicon"

{Bigrams} %FILE% "$creole_HBrill_home/greek/Bigrams"
{Lexical Rules} %FILE% \

"$creole_HBrill_home/greek/LexicalRules"
{Contextual Rules} %FILE% \

"$creole_HBrill_home/greek/ContextualRules"
{Additional Wordlist} {-w %FILE%} {}
{Intermediate output} {-i %FILE%} {}
{Process lines} {-s %NUMBER%} {}
{Start State Tagger only} -S {}

}
coupling dynamic
description

"This is the Greek Part-of-Speech Tagger \
(based on Brill Tagger).\n\
Author: Petasis Georgios, petasis@iit.demokritos.gr"

module_encoding iso8859-7
}

## Compatibility Mode: Use 0 for Ellogon mode, 1 for GATE compatibility
## mode...
set ::CDM::ComponentMode(creole_HBrill) 0

#
# End of File
#

Figure 4.1 The configuration file
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In the configuration file, you can see that we have defined several values for the 
pre-conditions and post-conditions, we have associated a single span and a raw 
viewer, we have set as parameters the four files that the Component needs as input, 
etc.  

The only pre-condition that we have set is for the natural language of the Docu-
ments to be English, as can be seen by the lines 

pre_conditions
{

collection_attributes {}
document_attributes {language_english}
annotations {}

}

Then, we have set two post conditions. The one concerns a document attribute 
which states that the Document has been run against this module (HBrill) and the 
second that two annotations will be added to the Documents of this Collection, the 
token and pos annotations. Those are indicated by the lines 

post_conditions
{

collection_attributes {}
document_attributes {HBrill}
annotations {{token pos}}

}

We have also associated two viewers, a raw and a single span viewer, as you can see 
from the lines 

viewers
{

{token pos} single_span {Brill POS Tags...}
{token} raw {Raw Token}
$creole_HBrill_home/GreekTags.html text_file \

{Greek POS Tag Definitions}
}

Furthermore, we have set several parameters, including the four files that are to be 
the input to the external module, as is shown in the lines 

parameters
{

{Lexicon} %FILE% \
"$creole_HBrill_home/greek/FinalLexicon"

{Bigrams} %FILE%
"$creole_HBrill_home/greek/Bigrams"

{Lexical Rules} %FILE% \
"$creole_HBrill_home/greek/LexicalRules"

{Contextual Rules} %FILE% \
"$creole_HBrill_home/greek/ContextualRules"

{Additional Wordlist} {-w %FILE%} {}
{Intermediate output} {-i %FILE%} {}
{Process lines} {-s %NUMBER%} {}
{Start State Tagger only} -S {}

}

The procedure for adding the above is exactly the same as the one we followed in 
the example of the previous chapter. 
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########################################################################
##
#
# HBrill.tcl - Saturday September 11 14:31:19 (EEST) 1999
# This is a loosed coupled (Tcl) Module for use with
# Ellogon, version 1.0...
#
########################################################################
##

# Location of this module (HBrill)
global creole_HBrill_home HBrill_tagger_home
set HBrill_tagger_home \

[file join $creole_HBrill_home RULE_BASED_TAGGER_V1.14 Bin_and_Data]

## creole_HBrill
#
proc creole_HBrill {doc args} {

global creole_HBrill_home HBrill_tagger_home CDM_TempDir
set current_dir [pwd]
cd $creole_HBrill_home

## Under Ellogon, the window that desplays the "wait" message can
## additionally display a progress bar. In order to activate this
## feature,you must execute the command "ggi_wait_update document
## percent". In fact, if you enclose the command in a catch block,
## this module will also run under GATE without problems. The second
## argument to the ggi_wait_update procedure is the percent, which is
## in the range [0,100] setting percent a negative value causes the
## progress bar to disappear.
catch {ggi_wait_update $doc 0}

## Create temporary file names...
if {![info exists CDM_TempDir]} {set CDM_TempDir /tmp}
set tmp_dump_fname [file join $CDM_TempDir HBrill_tmp[pid]_dump]
set tmp_read_fname [file join $CDM_TempDir HBrill_tmp[pid]_read]
set dev-null [file join $CDM_TempDir HBrill_tmp[pid]_delete]

## The first four arguments are the needed files...
foreach {lexicon_file bigrams_file lexrule_file context_file} $args

{break}
if {![file readable $lexicon_file]} {

error "unreadable lexicon file parameter $lexicon_file: \
creole_HBrill"

}
if {![file readable $bigrams_file]} {

error "unreadable bigrams file parameter $bigrams_file: \
creole_HBrill"

}
if {![file readable $lexrule_file]} {

error "unreadable lexical rule file parameter $lexrule_file:\
creole_HBrill"

}
if {![file readable $context_file]} {

error "unreadable contextual rule file parameter $context_file:\
creole_HBrill"

}
set other_args [lrange $args 4 end]
foreach arg $other_args {

set flag [string range [lindex $arg 0] 1 end]
set value [lindex $arg 1]
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switch -exact -- $flag {
w {

if {![file readable $value]} {
error "unreadable wordlist file parameter $value: \

creole_HBrill"}
}
i {

if {[file exists $value]} {
if {![file writable $value]} {

error "unwritable intermediate file parameter $value:\
creole_HBrill"

}
} else {

if {![file writable [file dirname $value]]} {
error "unwritable directory for intermediate file parameter\

$value: creole_HBrill"
}

}
}
s {

if {$value < 100} {
error "too small value for process lines parameter $value:\

creole_HBrill"}
}
S {}
default {error "bad option parameter $flag: creole_HBrill"}

}
}

# open file to use as input to external process
if {[catch {open $tmp_dump_fname w} tmp_dump]} {

error "Cannot open $tmp_dump_fname: $tmp_dump"
}
# write out required info
creole_dump_HBrill_file $tmp_dump $doc
close $tmp_dump

# call the external process

# (HBrill needs to run in its own directory)
set current_dir [pwd]
cd $HBrill_tagger_home
# (and needs its directory in the path as well, so use a subshell)
if {[catch {

eval exec tagger [list [file nativename $lexicon_file] \
[file nativename $tmp_dump_fname] \

[file nativename $bigrams_file] \
[file nativename $lexrule_file] \

[file nativename $context_file]] \
[join $other_args] > $tmp_read_fname 2> ${dev-null}} \
error]} {

# (HBrill's exit status is garbage so ignore it, but report others)
global errorCode
catch [file delete -force ${dev-null}]
if {[lindex $errorCode 0] != "CHILDSTATUS"} {

error "HBrill exited abnormally: $error"
}

}
cd $current_dir
catch [file delete -force ${dev-null}]

# open the external process's output file
if {[catch {open $tmp_read_fname r} tmp_read]} {

error ">>Cannot open $tmp_read_fname: $tmp_read"
}
# parse and add info to the database
if {[catch {creole_read_HBrill_file $tmp_read $doc} error]} {

close $tmp_read
error $error

}
close $tmp_read
catch {ggi_wait_update $doc 100}



 

 25

 

 
 
 
 
 
 
  
 
 
 
 

# delete tmp files
catch [file delete -force $tmp_dump_fname]
catch [file delete -force $tmp_read_fname]

# record the fact that we ran and exit normally
cd $current_dir
tip_PutAttribute $doc [tip_CreateAttribute HBrill \

[tip_CreateAttributeValue GDM_STRING {}]]
return

} ;# creole_HBrill

# creole_dump_HBrill_file
#
proc creole_dump_HBrill_file { dump_file doc } {

# get text string
set ByteSequence [tip_GetByteSequence $doc]

# find sentences
set SentenceAnns [tip_SelectAnnotations $doc sentence {}]
set items [llength $SentenceAnns]
if {!$items} {

error "creole_HBrill: No Sentence Annotations Found!"
}
set step [expr {33.0/$items}]
set progress $step

foreach sentence $SentenceAnns {
catch {ggi_wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_GetValueValue \

[tip_GetAttribute $sentence constituents]]
foreach token_id $constituents {

set token [tip_GetAnnotation $doc $token_id]
set span [lindex [tip_GetSpans $token] 0]
set start [tip_GetStart $span]
set end [tip_GetEnd $span]
set text [string range $ByteSequence $start [expr {$end - 1}]]
puts -nonewline $dump_file "$text "

}
puts $dump_file {};#newline

}
} ;# creole_dump_HBrill_file

# creole_read_HBrill_file
#
proc creole_read_HBrill_file {read_file doc} {

# find sentences
set SentenceAnns [tip_SelectAnnotations $doc sentence {}]
set items [llength $SentenceAnns]
if {!$items} {

error "creole_HBrill: No Sentence Annotations Found!"
}
set step [expr {33.0/$items}]
set progress [expr {66.0 + $step}]
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Figure 4.2 The Source Code 

foreach sentence $SentenceAnns {
catch {ggi_wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_GetValueValue \

[tip_GetAttribute $sentence constituents]]
set line [gets $read_file]
if {[eof $read_file]} {break}
set line [split $line]
set TaggedTokens {}
foreach token $line {

if {[string length $token]} {lappend TaggedTokens $token}
}
foreach id $constituents TaggedToken $TaggedTokens {

set token [tip_GetAnnotation $doc $id]
# get pos tag from tagger output
if {[regexp {.+/([^/]+)} $TaggedToken match tag]} {

# create a new attribute
set attribute [tip_CreateAttribute pos \

[tip_CreateAttributeValue GDM_STRING $tag]]
# add it to the current token annotation
set token [tip_PutAttribute $token $attribute]
# add the annotation back to the doc
tip_AddAnnotation $doc $token

}
}

}
} ;# creole_read_HBrill_file

## Procedure: creole_HBrill_Initialize
# Use this function in order to do some initialization. This function
# will be called just before creole_HBrill in the following
# situations:
# *) If the user has opened a whole Collection, this function will be
# called just before the first document in Collection gets
# proccessed with creole_HBrill
# *) If the user has opened a single Document, this function will be
# called
# just before calling creole_HBrill
# Please, refer to the Ellogon's Programming Manual for more
# information on this function...
proc creole_HBrill_Initialize { col doc args } {

global creole_HBrill_home
## Do some initilization here...

} ;# creole_HBrill_Initialize

## Procedure: creole_HBrill_Finish
# Use this function in order to do some Clean-Up. This function will
# be called after all calls to creole_HBrill in the following
# situations:
# *) If the user has opened a whole Collection, this function will be
# called just after the last document in Collection gets
# proccessed with creole_HBrill
# *) If the user has opened a single Document, this function will be
# called just after calling creole_HBrill
# Please, refer to the Ellogon's Programming Manual for more
# information on this function...
proc creole_HBrill_Finish { col doc args } {

global creole_HBrill_home
## Clean-Up...

} ;# creole_HBrill_Finish

#
# End of File
#
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In the source file, we do nothing in the Initialization and Finish procedures. In the 
main procedure we try to open the four files which are given as parameters to the 
Component. If any errors occur we try to handle them. The handling of the errors 
that might occur, is simply to issue an error message and terminate there the execu-
tion of the program. This is done in the lines which immediately follow those com-
ments 

## Create temporary file names...

## The first four arguments are the needed files...

If everything goes well, that is all files open without any errors occurring,  we open 
the file for output, as indicated by the lines 

# open file to use as input to external process
if {[catch {open $tmp_dump_fname w} tmp_dump]} {

error "Cannot open $tmp_dump_fname: $tmp_dump"
}

As you can, again if an error occurs we issue an error message and terminate the 
program. 

Now, if no error has occurred, we call the external program tagger with those four 
files as arguments and write to the output file the output of this external programm 

Then we read the output file with the aid of the procedure 
creole_read_HBrill_file

and then we close all the unnecessary files. 

The creole_read_HBrill_file procedure, tries to convert the information in the 
output file into legitimate Ellogon annotations, using similar procedures from the 
Ellogon API as the ones mentioned in the previous chapter. 

This procedure begins by saving all the sentence annotations in the sentenceAnns 
variable, with the aid of the  

tip_SelectAnnotations

procedure, which takes as arguments the document, the type of the annotation and 
a list of constraints which are empty in our case. If there are actually no such anno-
tations, an error is issued, as indicated by the lines 

if {!$items} {
error "creole_HBrill: No Sentence Annotations Found!"

}

If there are some annotations and no error occurs, we iterate through all the anno-
tations, i.e. all sentences, as shown from the lines which follow the statement 

foreach sentence $SentenceAnns {

In this iteration we read each line of the output file and we try to identify which 
tokens have been indeed tagged with a part of speech and which not. For all the 
tagged tokens, we create a new annotation that contains the information about the 
part of speech. 
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In essence, this is how we import external modules into Ellogon components. We 
have of course to know what input they need, what their output is and how to han-
dle it. 
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5 Further Information 
about the Ellogon API 

Ellogon has its own site which we invite you to visit at  
http://www.iit.demokritos.gr/skel/Ellogon/

This site contains, apart from this manual, also the Users’ Guide to Ellogon and the 
Ellogon’s Components Specification. 

Furthermore, you can get more help about the Ellogon API if you click on the 
“Help Contents” of the “Help” menu in the Ellogon interface.  
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