NATIONAL CENTER FOR SCIENTIFIC RESEARCH
"DEMOKRITOS"

Institute of Informatics
& Telecommunications

Software & I(nowled e En Ineerin Laborato
g gin g ry

Developers’
Guide to
Ellogon

Stergos D. Afantenos
George Petasis
Vangelis Karkaletsis

June 2002



Table of Contents

1 INTRODUCTION 2
1.1 WHATIS ELLOGON? 2
1.2 ESSENTIAL INGREDIENTS 3
1.3 WHAT FOLLOWS 3
1.4 ACKNOWLEDGMENTS 4
2 COMPONENTS’ FILES 5
2.1 CREATING A COMPONENT 5
2.2 COMPONENTS’ FILES 5
2.2.1 THE CONFIGURATION FILE 6
2.2.2 THE SOURCE FILE 9
3 ELLOGON API THROUGH AN EXAMPLE 12
3.1 THE GAZETTEER LOOKUP 12
3.2 THE CODE 13
3.2.1 THE INITIALIZATION PROCEDURE 13
3.2.2 THE FINALIZATION PROCEDURE 14
3.2.3 THE MAIN PROCEDURE 14
4 IMPORTING EXTERNAL COMPONENTS TO ELLOGON 20
4.1 A PART OF SPEECH TAGGER 20
4.2 IMPORTING EXTERNAL COMPONENTS 20
5 FURTHER INFORMATION ABOUT THE ELLOGON API 29




1 Introduction

Natural Language Processing (NLP) emerged as a mixed field of Computational
Linguistics and Artificial Intelligence, during the 1950’s. Since then there is a con-
stant outburst of interest, not only from people involved in academic research, but
also from companies involved in the production and commercial exploitation of
language engineering systems.

What all those people have in common is the need for a tool that will assist them
on their research. Here, in the SKEL laboratory of the NCSR "Demoktitos", we
have developed E/lpgon, a multi-lingual, cross-platform text-engineering environ-
ment developed exactly to aid people who are doing research in Computational
Linguistics, as well as companies which produce and deliver language engineering
systems. E/lpgon was developed in an attempt to create the necessary infrastructure
to facilitate the development and distribution of various NLP tools.

1.1 What is Ellogorn?

Before proceeding with what the Ellogon platform is, we would like to tell some
words about what E/ogon, as a word, means and how come we chose that particular
name. Ellpgon (EX\oyov) is composed from the ancient Greek words ev + Aoyog,
which taken together mean “in accordance with logic”. The Ellogon platform is actu-
ally in accordance with the logic, the logic that lurks underneath each writer of a
text, and helps scientists, working in the area of NLP, exploit that logic and make
bare all the information that lie inside a passage. But there is more to the story.
“Logos”, furthermore, can be translated as oration, talk, utterance or written
speech. We chose to name our platform El/lggon because it deals with texts, written
speeches or passages in other words, and makes the information that lie inside such
passages emerge.

Had we to desctibe the Elggon platform within a few words, we could say that E/-
logon 1s a general-purpose text-engineering platform. The word ‘platform” was empha-
sized here, in order to show that E/gon is simply an environment and as such, it
does not claim to perform any sort of linguistic processing. This is done with the
use of external embeddable components, which may be written either in Tcl/Tk or
in C/C++.



In another manual, the User Guide to Ellogon, we described the process of creating
such components, but didn’t delve into the details of how to write code using the
API of Ellggon. The purpose of this manual is to do exactly that. That is, to explain
in detail the E/ogon API.

1.2 Essential Ingredients

Before proceeding with the details that will enable one to create, test and debug
components on E/logon, there are some things that one has to know and have some
experience with them, in order for this manual to be comprehensive.

The best introduction to the E/ogon is the User Guide to Ellogon. The potential de-
veloper of components for E/ogon ought to have read that manual and have some
experience with the E/fogon through the components that someone else has written,
or through the components that are provided with the standard edition of E/ggon.
If this sounds too much, one ought to have acquired an understanding, at least, of
the Data Model of E/lagon, described in Chapter 2 of the User Guide to Ellogon. Some
understanding of the details described in Chapter 3 “Working with E/lgor’” is also
needed.

If you have already read that manual, then you will know that the core of Ellggon,
the Collection and Document Manager (CDM), is written in C++ and that linguistic
processing is done with the use of external embeddable components, which may
be written either in Tcl/Tk or in C/C++. Thus a basic tequirement for writing
components in Ellogon is to know very well either Tcl/ Tk or C/C++ or even, pref-
erably, both. In this manual we shall take for granted that you are an experienced
programmer in Tcl/Tk and C/C++.

1.3 What follows

Apart from this introductory chapter, this manual contains three more chapters. In
the second chapter we shall freshen up your memory on how to create a compo-
nent. The main discussion of that chapter will be the files that the Elogon creates
for the component, and the procedures that those files contain.

In the third chapter, we shall take a first look on the E/pgon API through an exam-
ple. The example will be the construction of a simple gazetteer lookup.

In the last chapter, we are going to describe the process of importing external ex-
ecutable programs into E/fogon Components.

Note that in this preliminary draft version of the Develgpers’ Guide to Ellogon we shall
limit ourselves to Tcl. In the following versions of this manual, our discussion will
be expanded so that it will also include C/C++.




1.4 Acknowledgments

We would like to thank our colleagues from the NLP group of the University of
Sheffield and especially the development team of the GATE 1 text engineering
platform. Our cooperation with the University of Sheffield in the context of the
R&D projects ECRAN! and GIE2, motivated us to be actively involved in the area
of text engineering platforms and make our first efforts towards the development

of Ellogon.

T'ECRAN is an R&D project on Information Extraction, partially funded by the EC (Telematics Appli-
cations / Language Engineering Action), 12/1995 — 02/1999. ECRAN partnets were Thomson-CSF
(France, coordinator), Universita di Ancona (Italy), Universita di Roma “Tor Vergata” (Italy), Smart In-
formation Services GmbH (Germany), NCSR "Demokritos" (Greece), Friburg University (Switzetland),
University of Sheffield (UK).

2 GIE is a bilateral project (English-Greek) on named entity recognition, funded by the Greek General
Secretariat of Research & Technology and the British Council, 05/1997-05/1999. GIE pattners were
NCSR "Demokritos" and the University of Sheffield.




2 Components’ Files

In Chapter 3 of the User Guide to Ellogon, and in particular in sections 3.6 and 3.7,
we described how to create and modify components. We presume that you are
already acquainted with those sections. In this chapter, we shall refresh your mem-
ory on how to create components, and then we shall describe the files that Elggon
creates and the procedures that they contain.

2.1 Creating a component

In the Ellpgon main window, select Or eat € New Mbdul e from the Modul e
menu. In the dialog box that opens, define a name for the component and set the
various parameters, such as the pre-conditions, post-conditions and the various
viewers that will be attached to the component.

For the purpose of the example that will follow in the next chapter we shall simply
set the name of the component as Exanpl eGazet eer ® and the component’s
title will be set to “Example Gazeteer”. No pre-conditions or post-conditions will
be set. Also, we will not associate any viewer with the component.

When you have finished push the “Save” button on the dialog. (See also Figure 2.7)

2.2 Components’ files

Once you have pushed the “Save” button, Elggon will create a new folder in the
directory you have specified, which will have the same name as the component
name. In the case we have a windows system, that folder will be the following:

C.\ nodul es\ Exanpl eGazet eer
In case we have a UNIX system, that folder will be
~/ modul es/ Exanpl eGazet eer

where the ~ represents your home directory.

3 Components’ names do not contain spaces and some other characters such as (;,: . -) In general valid
component names are valid names of C++ functions. See also Section 3.6 of the User’s Guide to Ellogon.




Ellogon v 1.0: Inte

— = Create Hew Module..

3'“9'“1“' laﬁecundlhuns l Postconditions la\.ﬂewers l %Parameters ‘
Module Hame |ExampIeGazetteer |Lnnse (Tclh j
Module Location  |fusrl/fusers/stergos/modules (= Select Directory ‘

Module Title |Examp|e Gazetteel] |

author: stergos, Thu Jun 20 16:32:21 EEST 2002
Description

A I save | ¥ Cancel |

Figure 2.1 Creating a new component

2.21 The configuration file

In that directory two fresh files will be created. The first one will always be called
creol e_config.tcl and you can see it in Figure 2.2.

As you can see, this file contains several pieces of information. In summary, the
information that this file contains are the following:

o Title:

It contains the title of the component. In our example it is the line:
title {Exanpl e Gazeteer}

o DPre-conditions:

It contains information about the collection and document attributes and
the annotations that must exist as pre-conditions. These pre-conditions
must be satisfied in order for the component to be able to execute cot-
rectly. In our example we set no pre-conditions for the Collection and
Document attributes, but we set pre-conditions for the annotations that
the Collection should contain. The line annotations {{token type}} indi-
cates that the Documents of the Collection should contain annotations
“token” with the attribute “type”.

o Post-conditions:

Similarly, post-conditions contain information about the collection and
document attributes and the annotations that will be added when the
component is executed. In our example no Collection attributes will be
added when the module finishes processing, but the Documents will get
the attribute “ExampleGazeteer”. The line annotations {Iookup {I ookup
type}} indicates that when the module finishes processing the Documents
will contain “lookup” annotations with attribute “type”.




Viewers

It contains information about the viewers (such as the single-span or the
raw text viewer) that are associated with the component. These viewers can
be easily accessible through a special menu offered by E/sgon GUI when
the component has been executed. That menu appears if you click on the
component once it has finished processing. In our example we have asso-
ciated four viewers with that component. The line {Iookup type} sin-
gl e_span {Lookup Annotations...} indicates that a Single Span viewer will be
associated with the component which will contain the “lookup” annota-
tions with attribute “type” and will be labelled “Lookup Annotations ...”.
Similarly for the line {token type} singl e_span {Token Annotations...}. The
line {1 ookup} raw {Raw Lookup Annotations...} is instructing E/lpgon to asso-
ciate a raw viewer with the component, which will show the “lookup” an-
notations and it will be labelled “Raw Lookup Annotations”. Finally the
line {token} AnnotationExplorer {Explore Annotations...} will associate an
Annotation Explorer viewer that will contain the “token” annotations and
iyt will be labelled “Explore Annotations...”.

Parameters

Information concerning the parameters (see section 3.0.3 of the User Guide
to Ellogon) is stored here. In our case we have set three parameters for the
example component that we have created. The first two are two files which
contain the lists that comprise the gazetteer. The lines {Location List}
%1 LE% {$creol e_Exanpl eGazett eer _hone/ gazl oc. | st} and {Person List}
9% LE% {$cr eol e_Exanpl eGazet t eer _hone/ gazper . | st} indicate that two vari-
ables {Location List} and {Person List} will contain the paths for the loca-
tion and person file respectively (see Tuable 3.7). The variable
$creol e_Exanpl eGazett eer _home contains the path of the component. The
third parameter { Dumy Bool ean Parameter} 0 {} contains simply a dummy
Boolean parameter that serves no actual purpose but only to show you
how to define Boolean parameters. It is set to 0 so the checkbox will ap-
pear unchecked.

Langnage

It contains the information about the programming language in which the
component is written. In our example, coupling |oose means that the
component is written in Tcl.

Description
A small description of the component, as given in the dialog box, is con-
tained herein. (see Figure 2.7)

Compatibility-Mode

This variable declares the compatibility mode under which this component
should be executed. Currently, two compatibility modes are available: F/-
logon’s native mode (value 0) and GATE 1 compatibility mode (value 1).
Available values may be increased in future versions of Ellogon, if addi-




tional compatibility modes are supported. In our example, the component
will not use any compatibility mode, as it is an E/fpgon native component.

Exanpl eGazetteer/creol e_config.tcl - configuration file
Tuesday June 11 14:42:10 (EEST) 2002

$ld: tenplate_config.tcl, Ellogon, version 1.0..
(Georgios Petasis, 23/11/1998), petasis@it.denokritos.gr

O HHHHHH

set creol e_config(Exanpl eGazetteer) \
{
title {Exanpl e Gazetteer}
pre_condi tions

collection_attributes {
docunent _attributes {
annot ati ons {

e

token type}}

post _condi tions

{
collection_attributes {}
docunent _attri butes { Exanpl eGazet t eer}
annot ati ons {I ookup {I ookup type}}
}
Vi ewers
{l ookup type} single_span {Lookup Annotations...}
{token type} single_span {Token Annotations.. .}
{ | ookup} raw {Raw Lookup Annotations...}
{t oken} Annot at i onExpl orer {Explore Annotations...}
}
paraneters
{

{Location List} %I LE% {$creol e_Exanpl eGazetteer_hone/ gazl oc. | st}
{Person List} %1 LE% { $cr eol e_Exanpl eGazet t eer _hone/ gazper. | st}
{Dummy Bool ean Paraneter} 0 {}

coupling | oose
description {Author: stergos, Tue Jun 11 14:28:06 EEST 2002}
nmodul e_encodi ng i so8859-7

}; # Exanpl eGazetteer

## Conpatibility Mdde: Use O for Ellogon node
set ::CDM : Conponent Mode(creol e_Exanpl eGazetteer) 0O

#
# End of File
#

Figure 2.2 The creole_config.zel file

The above information was placed to the configuration file according to the speci-
fications we have given on the dialog box depicted in Figure 2.1. In case you want
later to change something (e.g a pre-condition) you shall have to manually enter the
changes into the creole_config.tcl file. Generally, that is not recommended, unless
of course you are an expert E/lggon user and developer.




2.2.2 The source file

The other file that is created by E/gon is the source file, in which our source code,
that will perform a specific job, will be placed. You can see that file in Figure 2.3.
The name of that file is the name of the component that we gave in the dialog box
depicted in Figure 2.1 with the “.tcl” extension.

As you can see, this file contains three procedures and defines a variable. The vari-
able always has the form:

cr eol e_ {the name of the component}_hore

In our example that variable is the creol e_Exanpl eGazet eer _hone. This variable
contains the path in which the component’s source and configuration files are and
its value is automatically set by E/lsgon. Component developers should always use
the value of this variable in order to locate resources needed by the component,
that are stored in files or directories stored relatively to the location of the compo-
nent.

The procedures have always the form:

cr eol e_ {the name of the component}
cr eol e_ {the name of the component}_| ni ti al i ze
cr eol e_ {the name of the component}_Fi ni sh

In our example, the procedures have the form:

creol e_Exanpl eGazet eer
creol e_Exanpl eGazeteer _Initialize
creol e_Exanpl eGazet eer _Fi ni sh

From the names of the procedures, quite intuitively, you can understand what the
role of each one is. Sometimes, when you open a Collection, or a single Document,
you might want some initial job to be done as necessary preamble for the main job
you are going to perform to the Collection later. For example, you might want to
open some files and initialize some lists ad atrays, according to those files, or allo-
cate some memoty, etc. Similarly, after you have done some job to the Collection,
you might want to write a piece of code which will perform a finalization to the
main code you have written. For example you might want to close some open files,
free the memory you allocated, etc.

Such initializations and finalizations are very common. Thus apart from the main
procedure, (creol e_Exanpl eGazet eer in our example), we provide you with
two more procedures (creol e_Exanpl eGazeteer_|nitialize and cre-
ol e_Exanpl eGazet eer _Fi ni sh in our example) which should contain the ini-
tializations and finalizations you might wish to have.




SREHHAEHEH A ER R R AR A AR AR R AR E R AR R AR A B R B R AR R R R AR

Exanpl eGazeteer.tcl - Thursday May 23 17:48:29 (GIB Daylight Tine) 2002
This is a |l oosed coupled (Tcl) Mdule for use with
El | ogon, version 1.00..

HHHH R

BRHHHHRBHHHHHRRHHHH BB HHHH R HHH R HH AR R AR R R

# Location of this nodul e (Exanpl eGazet eer)
gl obal creol e_Exanpl eGazet eer _hone

## creol e_Exanpl eGazet eer

#

proc creol e_Exanpl eGazeteer {doc args} {
gl obal creol e_Exanpl eGazet eer _hone
set current _dir [pwd]
cd $creol e_Exanpl eGazet eer _hone

## Under Ellogon, the wi ndow that desplays the "wait" nessage can

## additionally display a progress bar. In order to activate this feature
## you nust execute the command "ggi _wait_update docunent percent"

## In fact, if you enclose the conmand in a catch block, this nmodule wll
## al so run under GATE without problens. The second argunent to the

## ggi _wai t _update procedure is the percent, which is in the range [0, 100]
## Setting percent a negative val ue causes the progress bar to di sappear
##  catch {ggi _wait_update $doc 0}

## Put your code here..

# record the fact that we ran and exit normally
cd $current_dir
tip_PutAttribute $doc [tip_CreateAttribute Exanpl eGazeteer \
[tip_CreateAttributeVal ue GDM STRING {}]]
}; # creol e_Exanpl eGazet eer

## Procedure: creol e_Exanpl eGazeteer | nitialize
Use this function in order to do some initialization. This function wll
be called just before creol e_Exanpl eGazeteer in the followi ng situations
*) |If the user has opened a whole Collection, this function will be
called just before the first document in Collection gets proccessed
with creol e_Exanpl eGazet eer
*) If the user has opened a single Docunent, this function will be called
just before calling creol e_Exanpl eGazet eer
Pl ease, refer to the Ellogon's Progranm ng Manual for nore
information on this function..
proc creol e_Exanpl eGazeteer _Initialize {col doc args} {
gl obal creol e_Exanpl eGazet eer _hone
## Do sone initilization here..
}:; # creol e_Exanpl eGazeteer_Initialize

HHHFHHHH R

## Procedure: creol e_Exanpl eGazet eer_Fi ni sh

Use this function in order to do some C ean-Up. This function wll
be called after all calls to creol e_Exanpl eGazeteer in the follow ng
situations:

*) |f the user has opened a whole Collection, this function will be
called just after the last document in Collection gets proccessed with
creol e_Exanpl eGazet eer

*) If the user has opened a single Docunment, this function will be called
just after calling creol e_Exanpl eGazet eer

Pl ease, refer to the Ellogon's Progranm ng Manual for nore
information on this function..
proc creol e_Exanpl eGazet eer _Fi ni sh {col doc args} {
gl obal creol e_Exanpl eGazet eer _hone
## O ean- Up. .
}; # creol e_Exanpl eGazet eer _Fi ni sh

HHHFHFHHHHHH

#
# End of File
#

Figure 2.3 The source file

10




One thing that is very important to keep in mind, is that the initialization and final-
ization procedures are performed on/y once on the whole Collections, whereas the
finalization procedure is preformed on every Document of the Collection. In other
words, once you open a Collection and you begin to run a component (our exam-
ple component, lets say) the first procedure that will run (and only once) is the
creol e_Exanpl eGazeteer_| nitial i ze. Then, for every Document of the Collection
the cr eol e_Exanpl eGazet eer will be called. Finally, after the whole Collection
has been processed, the cr eol e_Exanpl eGazet eer _Fi ni sh will be called once,
in order to perform some finalization.

The above will become more concrete with an example, which is the topic of the
next chapter.

1



3 Ellogon API through an
Example

In this chapter, we are going to cast an initial glance to the E/lsgon API through an
example. In this example, we are going to see several essential procedures of the
Ellogon APL They are essential in the sense that those procedures are the most
commonly used. After we have gone through this example, you are going to be
able to write code for Ellpgon components that will tackle a fairly big proportion of
common tasks. Note that you can get more help about the E/ogon API if you click
on the “Help Contents” of the “Help” menu in the E/ogon interface.

3.1 The Gazetteer Lookup

Before presenting you the code and going through it, we shall have to give you
more information concerning the component we are going to built and the Collec-
tion in which it is going to run.

What we are going to build is a very simple gazetteer lookup. In essence, a gazet-
teer is a list, or a collection of lists. Each list groups together several items belong-
ing to the same “category”. In our example the gazetteer contains information on
Named Entities. More specifically it contains two lists. The first list is a list of loca-
tions and the second list is a list of persons’ names. You can see the gazetteer in
Table 3.1. Actually, the files comprising the gazetteer were given as parameters to
the component (see the previous chapter).

gazl oc. | st gazper. | st
G eece Berlin Emanuel
France Thessal oni ca Dougl as
Gkl ahora M ssi ssi ppi Dani el
Pari s M ssouri N col a
Corfu California Mari a
Budapest Bar cel ona Vanessa
Rore Abraltar

Madri d Aegean

Spai n Crete

Por t ugal Rhodes

CGer many Sant ori ni

Table 3.1 The Gazetteer lists.

12




The Collection, upon which the component is going to run, consists of news docu-
ments written in English.

Our aim is to build a gazetteer lookup component which will locate all the in-
stances of the gazetteer’s elements and create an annotation of type | ookup. Each
annotation will have an attribute t ype which will declare whether the instance
found in the corpus is a person or location. In other words, if an instance of an
item of the person list was found, the attribute will be like this:

t ype=per son

In order to search for words in the corpus and compare them against the gazetteer,
we assume that the Collection has been previously processed by a tokenizer and a
sentence splitter. We also assume that a tokenizer is a component which takes a
Document and creates an annotation of type t oken for every token (word, punc-
tuation mark, etc) found in the Document. The code of the component, which
follows, presumes that this simple tokenizer has been run against the Collection, as
is indicated by the pre-conditions. Additionally, the sentence splitter component is
assumed to identify sentences and to create an Annotation of type “sentence” for
each identified sentence. All “sentence” Annotations must contain an Attribute
named “constituents” that should contain the Annotation Ids of all token Annota-
tions contained inside the corresponding sentence, ordered according to the way
they appear in the corpus.

3.2 The Code

The code of the component is presented in Figure 3.1, Figure 3.2 and Figure 3.3,
which contain the code for the initialization procedure, the main procedure and the
finalization procedure, respectively.

3.21 The Initialization Procedure

The initialization procedure is quite simple. In it we define two global variables
(cr eol e_Exanpl eGazetteer _Location and creol e_Eaxanpl eGazet eer Per son) which will be
the arrays in which the contents of the lists will be placed. The lists are contained in
the files that were given as parameters to the component. Here you can see a con-
vention that we use in order to avoid conflicts when we define global variables. We
prefix each global vatiable with creole_{name of the module}_. Of course you
could create a namespace and use that instead of the prefix.

We place the three parameters, including the dummy Boolean parameter, inside
variables with the line

foreach {LocationList PersonLi st Bool ean} $args {break}

The next step is to initialize the arrays. We open each file in turn, read its contents
and initialize the arrays by placing every line at the index of the array. We set the
contents of each element of the array to 0. When we are finished with each file, we
close it.

13



3.2.2 The Finalization Procedure

The finalization procedure is even simpler than the initialization. In it we simply
delete the two atrays we created in the Initialization procedure, so that they will not
be in the memory any more.

proc creol e_Exanpl eGazetteer_Initialize {col doc args} {
# global arrays that will contan the information fromthe gazeteers
gl obal creol e_Exanpl eGazetteer_Location
gl obal creol e_Exanpl eGazett eer _Person

# Place paranmeters in variables...
foreach {LocationLi st PersonLi st Bool ean} $args {break}

# Initialize the arrays

set creol e_Exanpl eGazetteer_GazLoc [open $Locati onLi st]

while {[gets $creol e_Exanpl eGazetteer_GazLoc line] >= 0} {
set creol e_Exanpl eGazetteer_Location($line) 0

cl ose $creol e_Exanpl eGazetteer_GazlLoc
set creol e_Exanpl eGazetteer_GazPer [open $PersonList]
while {[gets $creol e_Exanpl eGazetteer_GazPer line] >= 0} {

set creol e_Exanpl eGazetteer_Person($line) 0

cl ose $creol e_Exanpl eGazett eer _GazPer
}; # creol e_Exanpl eGazetteer_Initialize

Figure 3.1 The Initialization Procedure

3.2.3 The Main Procedure

The  main  procedure  begins by  declaring  that the cre-
ol e_Exanpl eGazetteer _Locati on and creol e_Exanpl eGazett eer _Person
variables are global. In other words, the arrays used in the initialization procedure
will be used again.

The following lines:

ggi _wait _update $doc 0O

set nunber_of tokens [Ilength \
[tip_Sel ect Annot ati onsSorted $doc token]]

set progress 0.0

set step [expr {100.0/($nunber_of tokens+1)}]

are concerned with the appearance of a progress bar, which will be filled as more
tokens are being processed. The first line defines that progress bar. Then we get
the number of tokens, using the ti p_Sel ect Annot ati onsSor t ed. This procedure takes
two arguments. The first one is the current document ($doc) and the next one is
the type of annotations we want (“token”). It returns a new list object that will
contain all the Annotations of the specified Document that their type is the same
as the value of the type parameter (the “token” in our case). The annotations will
be sorted according to their first span range, in ascending order. We can have ac-
cess to the current document through the doc variable passed as an argument to
the main procedure. We get the number of annotations using the I1ength proce-
dure of Tcl. The progress variable indicates the progress thus far (0 for the mo-
ment). The step indicates how much the progress will be incremented every time
we process a token.

14



The next step is to get the text of the Document that is being processed with the
procedure

ti p_Cet RawDat a

This procedure gets an argument which is the current Document of the Collection.

The next step is to get all the annotations of type “token” and iterate over all of
them comparing them against all the slots of our arrays and creating the appropri-
ate annotation, where appropriate. To get all the annotations of type “token”, we
use, as before, the following procedure

ti p_Sel ect Annot ati onsSort ed

After that, we iterate over all the tokens contained in the sorted annotations that
we got. For every token, we get the value of the annotation. In other words we get
the text which corresponds to the annotation. In order to do so, we use the follow-
ing procedure

tip_Cet First Annot at edText Range

This procedure takes two arguments. The first one is the text of the document,
which in our case is stored into the t ext variable, and the second argument is the
annotation object itself, which is stored into the token variable. As a result it re-
turns the text of the first span of the annotation.

Once we have taken that text and stored it into the t okenVal ue variable, we want
to check whether that text is the same with any of the slots of the arrays. In order
to examine that, we use the info exists procedure of Tcl to examine whether the
$t okenText exists as an index first to the creol e_Exanpl eGazet t eer _Locat i on array and
then to the creol e_Exanpl eGazet t eer _Per son atray. If it exists we are trying to create a
new annotation (lookup), which will have the same span as the token annotation,
and will have the attribute “location” or “person”, according to the array in which
we found it.

In order to create the annotation we use the procedure
ti p_CreateAnnotation
which takes three arguments. The first argument is the type of the annotation

(I ookup in our case). The second argument is the spans of the annotation. The
third one is the attributes of the annotation.

The type of the annotation is | ookup and it is simply a string. In order to set the
spans, we use the spans of the t oken annotation. We stored them previously in
the span variable using the procedure

ti p_GCet Spans

which takes as argument an annotation and returns the spans of the annotation.
We let the attributes empty. Instead we used the procedure

tip_ CeateAttribute

15



# Location of this nodul e (Exanpl eGazetteer)
gl obal creol e_Exanpl eGazetteer _hone

## creol e_Exanpl eGazetteer
#
proc creol e_Exanpl eGazetteer {doc args} {
gl obal creol e_Exanpl eGazetteer_Location creol e_Exanpl eGazetteer_Person

## Display a Progress bar...
ggi _wait_update $doc O

set nunber_of _tokens [llength [tip_Sel ect Annotati onsSorted $doc token]]
set progress 0.0
set step [expr {100.0/($nunber_of _tokens+1)}]

# Get the text of the docunent
set text [tip_GetRawData $doc]

# Select all the annotations of type "token"
set tokens [tip_Sel ect Annotations $doc "t oken"]

# lterate over all tokens
foreach token $tokens {

# Get the text annotated by the first span of the token annotation...
set tokenText [tip_GetFirstAnnotatedText Range $text $token]

# Check whether the text matches any of the elenents of the |ocation
array
if {[info exists creol e_Exanpl eGazetteer_Location($tokenText)]} {

# ... then get the spans of the token annotation ...
set spans [tip_GCet Spans $t oken]

# ... create an annotation with no attributes ...
set |l ocAnnotation [tip_CreateAnnotation "l ookup" $spans {}]

# ... and then add an attribute to it
set attr [tip_CreateAttribute "type" \
[tip_CreateAttributeVal ue GOM STRI NG "l ocation"]]
# ... add the attribute into the annotation ...
set locAnnotation [tip_PutAttribute $l ocAnnotati on $attr]

# ... finally, add the annotation to the docunent
ti p_AddAnnot ati on $doc $l ocAnnot ati on

} elseif {[info exists creol e_Exanpl eGazetteer_Person($tokenText)]} {

# Repeat the same job for the person array...
set spans [tip_GCet Spans $t oken]
# ... only that now we insert attributes immediatelly,
set attr [tip_CreateAttribute "type" \
[tip_CreateAttributeVal ue GDM STRI NG "person"]]
set perAnnotation [tip_CreateAnnotation "l ookup" $spans [list $attr]]

ti p_AddAnnot ati on $doc $per Annotati on
}
# Update the progress bar
set progress [expr {$progress+$step}]
catch {ggi _wait_update $doc $progress}

};# foreach token $tokens

Figure 3.2 The Main Procedure

16




proc creol e_Exanpl eGazetteer_Fi nish {col doc args} {

gl obal creol e_Exanpl eGazetteer_Location cre-
ol e_Exanpl eGazett eer _Per son

# Renove our arrays from nmenory...
unset -noconpl ain creol e_Exanpl eGazetteer_Location \
creol e_Exanpl eGazett eer _Person

}; # creol e_Exanpl eGazet t eer _Fi ni sh

Figure 3.3 The Finalization Procedure

to create an attribute. This procedure takes as arguments the type of the attribute
(type in our case) and the value of the attribute. In order to create the attribute
value, we used the

tip_CreateAttributeVval ue
procedure which takes two arguments: an integer and a string. The integer is the
type of the attribute value, and in our case we used the constant

GDM STRI NG

The string (Ze. the value of the attribute) is set to | ocati on or per son, according
to the array in which we iterate.

Once the attribute is created, and stored in the at t r variable, we use the

tip PutAttribute

procedure to put that attribute into the annotation. This procedure takes two ar-
guments: the annotation and the created attribute. It returns a new annotation with
the attribute now added.

Finally, the annotation is created. The only thing left now is to put that annotation
into the Document. We accomplish this by the

ti p_AddAnnot ati on

procedure. This one takes two arguments: the document that the annotation is go-
ing to be added in and the annotation itself.

Note that the same algorithm is used for both arrays. The only difference is that in
the case of the creole_Exanpl eGazetteer_Person atrray, we do not use the
tip_PutAttribute procedure, instead we insert the attribute immediately in the
ti p_O eat eAnnot ati on procedure, by using the expression [list $attr] instead of an
empty list that we used before.

The result is that new annotations of type NE have been created. You can see
them in Figure 3.4.

17



MORE and more foreigners are making (€] their home or home away from home.
For the most part, Germans, Britons and Americans are gobhbling up property and
huilding summer homes in Greek holiday destinations. They account for as much as 20
percent of real-estate transactions in the country, according to some unofficial
estimates.

B token + |
B sentence + |

host of these foreigners are tourists who have visited Greece, the Cycladic islands ¥ I lookup -

and the Peloponnese in particular, and have invested in cottages. & large number of

others, mainly pensioners, have settled permanently. According to the National Land

Registry, over 2,500 foreigners own property (a total of 3,200 acres) in the coastal

FPeloponnese prefecture of Lakonia. There are also some 1,750 estates in nearby

kessinia that are owned by foreigners. Over 2,000 own some 1,250 acres of land in

Hania, Crete, and twice as many have snatched up property on the island of Chios.

The Mational Land Registry figures also show that some 700 estates (520 acres) are

owned by foreigners on the Dodecanese islands of Patmos and Simi, nearly 100

estates (56 acres) on the Cycladic islands of Milos and Kimaolos and over 450 estates

(212 acres) on the islands of Corfu, Kefalonia, Zakynthos and Lefkada.

Settling down in Greece
1F0reign investment is generally welcomed by locals, especially those who have J

managed to sell property in remote rural communities ahandoned by city-hound _g_I

Y -

D [Type [stat  [End  [Attributes

919 |Loakup |38 |42 |type=location
920 locokup a7 104 type=person
921 Lookup 106 113 type=person
a2z locokup 118 127 type=person
923 locokup 390 396 type=location
924 locokup 402 410 type=location
925 Lookup 427 438 type=location
926 locokup 672 683 type=location
9‘? locokup 698 705 type=location
g8 locokup 751 759 type=location
929 locokup 840 845 type=location
Q30 locokup 08 913 type=location
931 locokup 1025 1035  type=location
a3z locokup 1047 1053  type=location
933 locokup 1058 1062  type=location
034 Llookup 1101 1109  type=location
Q35 locokup 1121 1126  type=location
Q36 locokup 1131 1138  type=location
Q37 lookup 1190 1195 type=location

o |

Figure 3.4 The Created Annotations

Finally, we have added some more code, which does nothing essential to the algo-
rithm, just to show you some more procedures of the Elpgon APIL You can see

that segment of code in Figure 3.5.

18




# Create a tenporary file with a unique name wite the paraneters in
it...
gl obal CDM TenpDi r
# Use file join to create the filename, in order to be platformin-
dependent .
set TenpFileNanme [file join $CDM TenpDir cre-
ol e_Exanpl eGazetteer_[ pid]]
set TenpFile [open $TenpFi |l eName wj
foreach {LocationLi st PersonLi st Bool ean} $args {break}
puts $TenpFile "Location List Paraneter: $LocationList"
puts $TenpFile "Person List Paraneter: $Per sonLi st "
puts $TenpFile "Dunmmy Bool ean Paraneter: $Bool ean”
cl ose $TenpFile

# Now, delete the tenporary file...
file delete -force $TenpFil eNane

# record the fact that we ran and exit normally
tip_PutAttribute $doc [tip_CreateAttribute Exanpl eGazetteer \
[tip_CreateAttributeVal ue GOM STRI NG {}]]
}; # creol e_Exanpl eGazett eer

Figure 3.5 The final segment of code for the main procedure of the component

In that segment of code, we are trying to create a file with a unique name in a tem-
porary folder, print the parameters in there, close the file and then delete it, since
we do not actually need it.

The unique file name is achieved by appending to creol e_Exanpl eGazetteer _ the
process id, which we take from the operating system using the pi d procedure. The
path of the temporary folder is returned from the E/lggon variable com TenpDir.

We put the contents of the parameters in variables by using the following code
foreach {LocationList PersonLi st Bool ean} $args {break}
exactly as we did in the initialization procedure. Then we write each parameter in

the file along with a comment and close it. Finally we delete the file using the fol-
lowing code

file delete -force $TenpFi | eNane

19



4 Importing External
Components to Ellogon

Under the Ellggon platform you can not only write your own Components, but you
can import external components written in some other language. The general idea
behind importing external components is that an executable file needs some files as
input and writes its output in some other files; so, we only have to write a fragment
of code that will create the input files that the executable needs and use the output
files that it creates. Then we can do whatever job we want with the output files, eg.
create some Fllpgon annotations and place them inside the Collection.

4.1 A Part of Speech Tagger

Let us look at an example, so that the above will become clearer. In this example
we are going to import an executable file which is in fact a part of speech tagger
(POS tagger) which was written by Eric Brill in 1995 and was modified by George
Petasis in 1999.

This POS tagger is looking at each token in a sentence and it tries to identify what
part of speech this token is. In order to do so, it uses four additional files as input:

Bigrams, ContextualRules, Finall_exicon, LexicalRules

If no errors occur, this POS tagger creates a new file which contains the part of
speech for every token in the text.

Our aim is to prepare those input files for the POS tagger, execute it, and get the
output file. Then, we have to take the information contained inside that output file
and convert them into E/pgon annotations.

4.2 Importing External Components

The process of importing external components into Elggon is quite easy. We begin
by creating a new component for E/lpgon, exactly as we did in the example of the
previous chapter. E/fogon will create two files, the configuration file and the source




file. In our case we have named the component HBrill and you can see the con-
figuration file in Fjgure 4.1, and the source file in Figure 4.2.

HBrill/creole_config.tcl - configuration file
Sat urday Septenber 11 14:31:19 (EEST) 1999

$ld: tenplate_config.tcl, Ellogon, version 1.0...
(Georgios Petasis, 23/11/1998), petasis@it.denpkritos.gr

A HHFHH R

set creole_config(HBrill) {
title {Geek POS Tagger}
pre_condi tions

collection_attributes {}
docunent _attributes {l anguage_engl i sh}
annot ati ons {}

post _condi tions

collection_attributes {}
docunent _attributes {HBrill}
annot ati ons {{token pos}}
}
Vi ewer s
{
{token pos} single_span {Brill POCS Tags...}
{t oken} raw {Raw Token}

$creole_HBrill _home/ GreekTags. htm text_file \
{G eek POs Tag Definitions}

}
paraneters
{
{Lexi con} %1 LE% \
"$creol e_HBrill _home/ greek/ Fi nal Lexi con"
{Bi grans} %1 LE% " $creol e_HBril | _home/ greek/ Bi gr ans"
{Lexi cal Rul es} %1 LE% \
"$creol e_HBrill _home/ greek/ Lexi cal Rul es"
{Cont extual Rul es} % LE%\
"$creol e_HBrill _hone/ greek/ Cont ext ual Rul es"
{Addi tional Wordlist} {-w %I LE% {}
{Intermedi ate out put} {-i %I LE% {}
{Process |ines} {-s 9%UMBER% {}
{Start State Tagger only} -S {}

coupling dynam c
description
"This is the Greek Part-of-Speech Tagger \
(based on Brill Tagger).\n\
Aut hor: Petasis Ceorgios, petasis@it.denmokritos.gr"
nodul e_encodi ng i so8859-7

}

## Conpatibility Mdde: Use O for Ellogon node, 1 for GATE conpatibility
## node. ..
set ::CDM: Conponent Mode(creole HBrill) O

#
# End of File
#

Figure 4.1 The configuration file

21



In the configuration file, you can see that we have defined several values for the
pre-conditions and post-conditions, we have associated a single span and a raw
viewer, we have set as parameters the four files that the Component needs as input,
ere.

The only pre-condition that we have set is for the natural language of the Docu-
ments to be English, as can be seen by the lines

pre_conditions

{
collection_attributes {}
docunent _attri butes {l anguage_engl i sh}
annot ati ons {}

}

Then, we have set two post conditions. The one concerns a document attribute
which states that the Document has been run against this module (HBrill) and the
second that two annotations will be added to the Documents of this Collection, the
token and pos annotations. Those are indicated by the lines

post _condi ti ons

collection_attributes {}
docurent _attri butes {HBrill}
annot ati ons {{token pos}}

}

We have also associated two viewers, a raw and a single span viewer, as you can see
from the lines

Vi ewer s

{token pos} single_span {Brill POCS Tags...}
{t oken} raw { Raw Token}
$creol e_HBrill_hone/ G eekTags. htm text_file \
{Geek PCs Tag Definitions}
}

Furthermore, we have set several parameters, including the four files that are to be
the input to the external module, as is shown in the lines

par anet ers
{
{Lexi con} %1 LE% \
"$creol e_HBrill _hone/ greek/ Fi nal Lexi con"
{Bi grans} %1 LE%
"$creol e_HBrill _hone/ greek/Bi grans”
{Lexi cal Rul es} %1 LE% \
"$creol e_HBrill _hone/ greek/ Lexi cal Rul es”
{Contextual Rules} % LE%\
"$creol e_HBrill _home/ gr eek/ Cont ext ual Rul es"
{Addi tional Wrdlist} {-w %I LE% {}
{I'nternedi ate out put} {-i %I LE% {}
{Process |ines} {-s %WUMBER% {}
{Start State Tagger only} -S {}
}

The procedure for adding the above is exactly the same as the one we followed in
the example of the previous chapter.




RAHBHHBHHARHARFHARBARH ARG B HBRHARH AR R AR ARG B HHARHAR R AR R B A BRI H B HARHBRE

#it

#

# HBrill.tcl - Saturday September 11 14:31:19 (EEST) 1999
# This is a |l oosed coupled (Tcl) Mdule for use with

# El I ogon, version 1.0...

#

HHHHH B R R
#it

# Location of this nmodule (HBrill)
gl obal creole_ HBrill_hone HBrill _tagger_hone
set HBrill _tagger_hone \
[file join $creole_HBrill_hone RULE_BASED TAGGER V1. 14 Bi n_and_Dat a]

## creole_HBrill

#

proc creole_HBrill {doc args} {
gl obal creole_HBrill_hone HBrill_tagger_hone CDM TenpDir
set current _dir [pwd]
cd $creole HBrill _hone

## Under El |l ogon, the wi ndow that desplays the "wait" nessage can

## additionally display a progress bar. In order to activate this

## feature,you nust execute the comuand "ggi _wait_update docunent

## percent”. In fact, if you enclose the command in a catch bl ock,

## this nodule will also run under GATE without problens. The second
## argunent to the ggi _wait_update procedure is the percent, which is
## in the range [0, 100] setting percent a negative value causes the
## progress bar to disappear.

catch {ggi _wait_update $doc 0}

## Create tenporary file nanes...

if {!I[info exists CDM TenpDir]} {set CDM TenpDir /tnp}

set tnp_dunp_fnane [file join $CDM TenpDir HBrill _tnp[ pid] _dunp]
set tnp_read_fnane [file join $COM TenpDir HBrill _t np[ pid] _read]
set dev-null [file join $CDM TenpDir HBrill _tnp[ pi d] _del et e]

## The first four arguments are the needed files...
foreach {lexicon_file bigrams_file lexrule_file context_file} $args
{ br eak}
if {![file readable $lexicon_file]} {
error "unreadable lexicon file paranmeter $lexicon_file: \
creole HBrill"

}
if {{[file readable $bigrans_file]} {
error "unreadable bigrans file paraneter $bigrans_file: \
creole HBrill"

}
if {!{[file readable $lexrule_file]} {
error "unreadable lexical rule file parameter $lexrule_file:\
creole HBrill"

}
if {!{[file readable $context_file]} {
error "unreadabl e contextual rule file paranmeter $context_file:\
creole HBrill"

set other_args [lrange $args 4 end]

foreach arg $other_args {
set flag [string range [lindex $arg 0] 1 end]
set value [lindex $arg 1]

23




switch -exact -- $flag {
w {
if {![file readable $value]} {
error "unreadable wordlist file paranmeter $val ue: \

creole_HBrill"}
}
i q
if {[file exists $value]} {
if {![file witable $value]} {
error "unwitable internediate file paraneter $val ue:\
creole_HBrill"
} else {
if {![file witable [file dirnane $value]]} {
error "unwitable directory for internediate file paraneter\
$val ue: creole_HBrill"
}
}
}
s {
if {$value < 100} {
error "too small value for process |ines paraneter $val ue:\
creole_HBrill"}
}
S {}
default {error "bad option paraneter $flag: creole_HBrill"}

}
}

# open file to use as input to external process

if {[catch {open $tnp_dunp_fname w} tnp_dunmp]} {
error "Cannot open $tnp_dunp_fname: $tnp_dunp”
}

# wite out required info
creol e_dunp_HBrill _file $tnmp_dunmp $doc
cl ose $tnp_dunp

# call the external process

# (HBrill needs to run in its own directory)
set current_dir [pwd]
cd $HBrill _tagger_hone
# (and needs its directory in the path as well, so use a subshell)
if {[catch {
eval exec tagger [list [file nativename $l exicon_file] \
[file nativenane $tnp_dunp_fnane] \
[file nativenane $bigrams_file] \
[file nativenane $lexrule_file] \
[file nativenane $context_file]] \
[join $other_args] > $tnp_read_fname 2> ${dev-null}} \
error]} {
# (HBrill's exit status is garbage so ignore it, but report others)
gl obal errorCode
catch [file delete -force ${dev-null}]
if {[lindex $errorCode 0] != "CH LDSTATUS"} {
error "HBrill exited abnormally: S$error”

}

cd $current _dir
catch [file delete -force ${dev-null}]

# open the external process's output file

if {[catch {open $tnp_read_fname r} tnp_read]} {
error ">>Cannot open $tnp_read_fnanme: $tnp_read"

}

# parse and add info to the database

if {[catch {creole_read HBrill_file $tnp_read $doc} error]} {
cl ose $tnp_read
error $error

cl ose $tnp_read
catch {ggi _wait_update $doc 100}

24




# delete tmp files
catch [file delete -force $tnp_dunp_f nane]
catch [file delete -force $tnp_read_f nane]

# record the fact that we ran and exit nornally
cd $current _dir
tip_PutAttribute $doc [tip_CreateAttribute HBrill \
[tip_CreateAttributeVal ue GDM STRING {}]]
return
} ;# creole_HBrill

# creole_dunp_HBrill _file
#
proc creole_dump_HBrill _file { dunp_file doc } {

# get text string
set ByteSequence [tip_GCet Byt eSequence $doc]

# find sentences
set SentenceAnns [tip_Sel ect Annot ati ons $doc sentence {}]
set items [Ilength $Sent enceAnns]
if {!$itens} {
error "creole HBrill: No Sentence Annotations Found!"

}
set step [expr {33.0/%itens}]
set progress $step

foreach sentence $SentenceAnns {
catch {ggi _wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_CetVal ueval ue \
[tip_GetAttribute $sentence constituents]]
foreach token_id $constituents {
set token [tip_Get Annotation $doc $token_id]
set span [lindex [tip_GetSpans $token] 0]
set start [tip_CetStart $span]
set end [tip_GetEnd  $span]
set text [string range $ByteSequence $start [expr {$end - 1}]]
puts -nonew ine $dump_file "$text

puts $dunmp_file {};#newine

} ;# creole_dunp_HBrill _file

# creole_read_HBrill _file
#
proc creole_read HBrill _file {read_file doc} {

# find sentences
set SentenceAnns [tip_Sel ect Annotati ons $doc sentence {}]
set items [|length $Sent enceAnns]

if {!S$itens} {

error "creole_HBrill: No Sentence Annotations Found!"
}
set step [expr {33.0/%itens}]

set progress [expr {66.0 + $step}]




foreach sentence $SentenceAnns {
catch {ggi wait_update $doc $progress}
set progress [expr {$progress + $step}]
set constituents [tip_CetVal ueval ue \
[tip_GetAttribute $sentence constituents]]
set line [gets $read file]
if {[eof $read_file]} {break}
set line [split $line]
set TaggedTokens {}
foreach token $line {
if {[string length $token]} {lappend TaggedTokens $token}

foreach id $constituents TaggedToken $TaggedTokens {

set token [tip_GetAnnotation $doc $id]

# get pos tag fromtagger output

if {[regexp {.+/([~]+)} $TaggedToken match tag]} {
# create a new attribute
set attribute [tip_CreateAttribute pos \

[tip_CreateAttributeVal ue GDM STRING $t ag]]

# add it to the current token annotation
set token [tip_PutAttribute $token $attri bute]
# add the annotation back to the doc
ti p_AddAnnot ati on $doc $t oken

}
}

} ;# creole_read_HBrill _file
## Procedure: creole HBrill _Initialize
# Use this function in order to do sonme initialization. This function
# wll be called just before creole_HBrill in the follow ng
# si tuati ons:
# *) If the user has opened a whole Collection, this function will be
# called just before the first docunment in Collection gets
# proccessed with creole_HBril
# *) If the user has opened a single Document, this function will be
# call ed
# just before calling creole_HBril
# Pl ease, refer to the Ellogon's Progranm ng Manual for nore
# information on this function...
proc creole_HBrill _Initialize { col doc args } {

gl obal creole_HBrill_hone

## Do some initilization here...
} ;# creole_HBrill_Initialize
## Procedure: creole_HBrill _Finish

# Use this function in order to do some O ean-Up. This function wll

# be called after all calls to creole_HBrill in the follow ng

# situations:

# *) If the user has opened a whole Collection, this function will be
# called just after the last docunment in Collection gets

# proccessed with creol e_HBril

# *) If the user has opened a single Docunment, this function will be
# called just after calling creole_HBril

# Pl ease, refer to the Ellogon's Progranm ng Manual for nore

# information on this function...

proc creole_ HBrill _Finish { col doc args } {
gl obal creole_HBrill_hone
## Cl ean- Up. .

} ;# creole_HBrill_Finish

#

# End of File

#

Figure 4.2 The Sonrce Code




In the source file, we do nothing in the Initialization and Finish procedures. In the
main procedure we try to open the four files which are given as parameters to the
Component. If any errors occur we try to handle them. The handling of the errors
that might occur, is simply to issue an error message and terminate there the execu-
tion of the program. This is done in the lines which immediately follow those com-
ments

## Create tenporary file nanes...

## The first four argunents are the needed files...

If everything goes well, that is all files open without any errors occurring, we open
the file for output, as indicated by the lines

# open file to use as input to external process

if {[catch {open $tnp_dunp_fname w} tnp_dunp]} {
error "Cannot open $tnp_dunp_fnanme: $tnp_dunp”
}

As you can, again if an error occurs we issue an error message and terminate the

program.

Now, if no etror has occurred, we call the external program tagger with those four
files as arguments and write to the output file the output of this external programm

Then we read the output file with the aid of the procedure

creole read HBrill file

and then we close all the unnecessary files.

The creole_read_HBrill _file procedure, tries to convert the information in the
output file into legitimate E/ogon annotations, using similar procedures from the
Ellogon API as the ones mentioned in the previous chapter.

This procedure begins by saving all the sentence annotations in the sent enceAnns
variable, with the aid of the

ti p_Sel ect Annot ati ons

procedure, which takes as arguments the document, the type of the annotation and
a list of constraints which are empty in our case. If there are actually no such anno-
tations, an error is issued, as indicated by the lines
if {!Sitems} {
error "creole HBrill: No Sentence Annotations Found!"

}

If there are some annotations and no error occurs, we iterate through all the anno-
tations, ze. all sentences, as shown from the lines which follow the statement

foreach sentence $Sent enceAnns {

In this iteration we read each line of the output file and we try to identify which
tokens have been indeed tagged with a part of speech and which not. For all the
tagged tokens, we create a new annotation that contains the information about the
part of speech.

27



In essence, this is how we import external modules into Elggon components. We
have of course to know what input they need, what their output is and how to han-
dle it.




5 Further Information
about the Ellogon AP/

Ellogon has its own site which we invite you to visit at

http://wwviit.denokritos.gr/skel/E | ogon/

This site contains, apart from this manual, also the Users’ Guide to Ellogon and the
Ellogon’s Components Specification.

Furthermore, you can get more help about the E/gon API if you click on the
“Help Contents” of the “Help” menu in the E/ogon interface.



http://www.iit.demokritos.gr/skel/Ellogon/

	Introduction
	What is Ellogon?
	Essential Ingredients
	What follows
	Acknowledgments

	Components’ Files
	Creating a component
	Components’ files
	The configuration file
	The source file


	Ellogon API through an Example
	The Gazetteer Lookup
	The Code
	The Initialization Procedure
	The Finalization Procedure
	The Main Procedure


	Importing External Components to Ellogon
	A Part of Speech Tagger
	Importing External Components

	Further Information about the Ellogon API

