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Abstract

The recognition of Proper Nouns (PNs) is considered
an important task in the area of Information Retrieval
and Extraction. However the high performance of most
existing PN classifiers heavily depends upon the avail-
ability of large dictionaries of domain-specific Proper
Nouns, and a certain amount of manual work for rule
writing or manual tagging. Though it is not a heavy
requirement to rely on some existing PN dictionary (of-
ten these resources are available on the web), its cov-
erage of a domain corpus may be rather low, in ab-
sence of manual updating. In this paper we propose a
technique for the automatic updating of a PN Diction-
ary through the cooperation of an inductive and a
probabilistic classifier. In our experiments we show
that, whenever an existing PN Dictionary allows the
identification of 50% of the proper nouns within a cor-
pus, our technique allows, without additional manual
effort, the successful recognition of about 90% of the
remaining 50%.

Keywords: information extraction, natural language
processing for IR, machine learning and IR, text data
mining

1  Proper Noun Classification

Information Extraction (IE) is the task of automatically extract-
ing information of interest from unconstrained text and creat-
ing a structured representation of this information. In IE we are
mainly interested in extracting events. Every event involves a
number of named entities, which belong in different semantic
classes (e.g. persons, organisations, locations, dates), and some
relationships that hold among these named entities (e.g. per-
sonnel joining and leaving companies in management succes-
sion events). As a result, an IE task involves two main sub-
tasks: the recognition of the named entities involved in an
event and the recognition of the relationships holding between
named entities in that event. A named entity (NE) is a proper
noun (PN), serving as a name for something or someone.
Named Entity Recognition (NERC) is the task of identifying
and semantically tagging proper nouns (PNs) in running texts.
In terms of syntactic categories, PNs are lexical noun phrases,
consisting of primitive proper nouns (e.g. Clinton), groups of
proper nouns of different semantic categories (e.g. Vice
Chairman James T. Sherwin) and also of non-proper nouns
(e.g. Jamaica tourist board). In the latter case, capital letters
are optional, making the problem of PN identification even
more complex. A typical NERC system mainly consists of a
dictionary and a grammar. The dictionary is a set of proper
nouns that are known beforehand and have been classified into
PN types. The grammar is used to recognize PNs that are not
in the dictionary and to decide upon the final types of PNs in
cases where ambiguity exists in the dictionary. The NERC task



plays an essential role in IE because all proper nouns (named
entities) must be located in order to be used in the extracted
events. The importance of NERC in IE is such that in the Mes-
sage Understanding Conferences (MUCs) [9] [10] NERC is
evaluated as a separate task.

The special status of the NERC task in information extrac-
tion is justified by the fact that in many sublanguages, PNs rep-
resent a significant percentage (30% or more) of the words in a
corpus. NERC is therefore essential to the effective under-
standing of language, at least so that PNs can be recognised
within their context as locations, products, persons, etc. The
semantic information incorporated in a PN dictionary can be of
great usefulness to several information retrieval tasks, like
term-based information retrieval; i.e. if a user request (or part
of) consists of words that form a PN, better results can be ob-
tained if we require that these words appear consecutively in a
document rather than returning documents that contain all the
words in various (and possibly unrelated) locations. As a re-
sult, NERC takes on special significance in many applications,
in which names play a key role, e.g. automated telephone call
handling and information filtering for financial applications.

The performance of NERC systems has been evaluated in
the MUC conferences and was reported to reach performance
comparable to humans. Yet, since PNs are mostly domain-
specific, there is no evidence that similar performance could be
obtained in other languages and domains than those considered
in the literature, if not at the price of a similar effort for the
manual adaptation of the grammar and for the compilation of a
high-coverage PN dictionary. Furthermore, the categories into
which PNs are classified constitute semantic information that
varies significantly in different thematic domains. For instance
the identification of organisation names may be relevant in the
domain of financial news, but not in the scientific literature.

The manual adaptation of PN dictionaries and contextual
rules to a particular domain is very time-consuming and in
some cases impossible, due to the lack of experts. Thus, the
automatic acquisition/adaptation of these resources from cor-
pora is highly desirable. In any case, since PNs form an open
class, adaptable language engineering systems should provide
automatic means to increase system robustness against un-
known items.

The exploitation of learning techniques to support the adap-
tation of linguistic resources to domains and languages has re-
cently attracted the attention of many researchers. Good results
have been demonstrated with stochastic classifiers [3] [4] and
decision-tree based inductive classifiers [17]. Machine learning
techniques are classified into two broad categories: supervised
and unsupervised. Supervised learning techniques require the
existence of training examples that have been hand-tagged
with the correct class. On the other hand, unsupervised tech-
niques assume that the correct classification of the training ex-
amples is not known and classify the examples according to a
similarity metric.

Supervised methods are more expensive than unsupervised
ones, in terms of the time spent to pre-process the training
data. However, the additional information included in super-
vised data leads usually to a better classification system. Nym-
ble [3], Alembic [18] [11], and AutoLearn [6] are examples of
systems exploiting supervised learning techniques. On the
other hand, the NERC system developed for Italian [7] [8] is
an example of a system exploiting unsupervised learning.

In this paper, we present a method that combines an induc-
tive and a probabilistic classifier, in order to achieve high per-
formance in adapting a possibly low-coverage Proper Noun
Dictionary to a domain. Both classifiers use as initial knowl-
edge source a list of PNs (dictionary), and cooperate at learn-
ing new instances and updating this dictionary.

The two classifiers operate in cascade.

In phase 1 we apply a supervised decision-tree learning al-
gorithm to the task of classifying PNs in predefined categories.
The learning algorithm that was used for this task is a general-
purpose supervised machine learning algorithm, called C4.5
[16]. The aim of the learning process is to construct a decision
tree that will classify PNs based on their structure and the envi-
ronment they appear in.

In phase 2 an unsupervised corpus-driven statistical tech-
nique is employed to classify PNs not recognized in phase 1.
Unknown instances are classified on the basis of a syntactic
contextual model of PN semantic categories, learned on the
basis of seed PN instances that are detected in phase 1.

The important advantage of our integrated classifier is that
we achieve both high recall and precision, while posing limited
requirements on the initial coverage of the available PN Dic-

tionary.

2 Inductive learning of a PN classifier

In this section we examine the use of the learning algorithm
C4.5 for the automated acquisition of PN categorisation rules.
C4.5 is a supervised learning algorithm that performs induction
of decision trees, i.e., it constructs decision trees from training
data. The algorithm requires the training data to be provided in
a feature-vector format, which is common in most work in
symbolic machine learning. In this representation each PN is
represented by a vector of values for a fixed set of features.

For the purpose of this experiment, we have decided to en-
code two features for each relevant word in the corpus. The
first feature represents semantically enriched part-of-speech
information, which includes the part of speech (POS) tag (e.g.
adjective, possessive determiner, auxiliary verb) extended with
a gazetteer' tag (e.g. city, country, organisation), when such
information is available. In cases where a gazetteer tag is
available, then this information supplements the POS informa-
tion. The second feature represents additional morphological

! The gazetteers used in the experiment are general-purpose
and should not be confused with the domain-specific PN dic-
tionary to be extended by our method.



information, relative to the value of the first feature. This in-
formation includes the number for nouns and adjectives, tense,
person and mood for verbs, person for pronouns etc. Note that
the actual word form (or its root) is not included in the feature
vector.

The learning algorithm demands all feature vectors to be of
a fixed length. Thus, except from the choice of what to repre-
sent, we have to find a solution about how to represent it, as
the length of PNs is not fixed. In order to transform a PN of
variable length into a feature vector of fixed length, we have
chosen to encode only part of the PN into the representation.
This information is augmented with words in the close vicinity
of the PN. For the purpose of this experiment, we have chosen
to include the first two and the last two words of the PN, as
well as two words before and two words after the PN (contex-
tual information). Thus, each PN is represented by a vector of
16 features (8 words times 2 features each).

The way in which C4.5 constructs the decision tree from
training data is of limited interest in this study and is only
briefly mentioned here. C4.5 uses a greedy hill-climbing
search through the space of possible decision trees aiming to
construct one that explains well the data. It performs this
search by the method of recursive partitioning of the training
data. It starts with the complete dataset and chooses one fea-
ture that discriminates best between examples (feature vectors)
of different types, i.e., organisations, persons or locations. The
quality of discrimination is assessed by an information-
theoretic metric, based on mutual information. The same ap-
proach is applied recursively on each subset, choosing other
features for discrimination and partitioning the training set fur-
ther.
“purer” subsets, i.e., sets which contain many examples of one

This continuous partitioning leads to increasingly

class, e.g. person, and few of all other classes. The process
ends when a stopping criterion is satisfied. In the simplest case,
this criterion requires completely pure subsets, i.e., each train-
ing subset associated with a leaf node should contain only one
type of example. This criterion is unrealistic for real-world
problems and leads to overtraining of the decision tree to the
data. In order to avoid this problem, C4.5 incorporates a prun-
ing method, which constructs a more robust decision tree, al-
lowing a small amount of impurity on the final subsets gener-
ated by the recursive partitioning. Thus, each of the leaves in
the tree may classify incorrectly a few of the PNs in the train-
ing set. However, it is expected to capture the most important
classification rules.

The training data for C4.5 are constructed with the use of the
initial low coverage PN dictionary. Using these data, the algo-
rithm constructs a decision tree, which is applied to the PNs
not covered by the dictionary and assigns a semantic class to
some of them. The newly classified PNs, together with the un-
classified ones are then fed to the probabilistic learning algo-
rithm for further refinement.

3 Probabilistic learning of PN’s Contextual Model

In this section we briefly summarize the corpus-based tag-
ging technique for the classification of proper nouns that have
not been categorized by the decision-tree classifier.

3.1

This second stage of our method starts by assuming that the
decision-tree classifier has detected “some” examples of PNs
in each semantic category. Then, through an wunsupervised
probabilistic technique, typical PN syntactic and semantic con-
texts are learned from a corpus. These contextual models are
used to identify new PNs and extend the coverage of the PN
dictionary.

The corpus to be used for learning needs to be morphologi-
cally processed. Then, a partial parser® [1] extracts elementary
syntactic relations such as Subject-Object, Noun-Preposition-
Noun, etc. An elementary syntactic link (hereafter esl) is de-
noted by:

Learning contextual sense indicators

esli(wj, mod(type,w,)

where w; is the head word, w,_is the modifier, and type, is
the type of syntactic relation (e.g. Prepositional Phrase, Sub-
ject-Verb, Verb-DirectObject, etc.).

In our study, the context of a word w in a sentence S is rep-
resented by the esls that include w as one of their arguments.
The esls including semantically classified PNs as one of their
arguments are grouped in a database, called PN_esl. This data-
base provides contextual evidence to assign a category to un-
known PNs. Another database, UPN_esl, includes all the esls
with an unknown proper noun. Syntactic contexts can be gen-
eralized by replacing words by their hypernyms in WordNet
[15].

3.2

A corpus-driven algorithm is used to classify unknown
proper nouns in UPN_esl:

Classifying unknown PNs

« Let U_PN be an unknown proper noun, i.e., a single
word or a complex nominal. Let C_=(C_, C _ ..,
pn pnl pn2
CpnN) be the set of semantic categories for proper nouns
(e.g. Person, Organisation, Product etc.). Finally, let
ESL be the set of esls in UPN_esl that include U_PN as
one of its arguments.

* For each eslj in ESL let:
esll.(wj, mod(type,w))=esl (x,U_PN)

where X=W, or W and U_PN =w, or W, type; is the syn-
tactic type of esl (e.g. N-of-N, N_N, V-for-N etc), and
furthermore let:

pl(esl, (x, U_PN))

be the plausibility of a detected esl. The plausibility is a
measure of the statistical evidence of a detected syntac-

2 Shallow, or partial parsers are a well established technique
for corpus parsing. Several partial parsers are available in lit-
erature, and some are also freely downloadable.



tic relation [2] [13] that depends upon /ocal (i.e. at the

sentence level) syntactic ambiguity and global corpus

evidence. Plausibility accounts for the uncertainty aris-
ing from syntactic ambiguity. Roughly, the /ocal plau-
sibility is proportional to the inverse of the number of
colliding syntactic interpretations in a sentence. At the
global (corpus) level, identical esls are merged, and
their plausibility values are cumulated. In general, cor-
rect interpretations cumulate higher evidence, while
noise tent to be more sparse.

* Finally, let:

- ESL, be a set of esls in PN_esl defined as follows:
for each esl(x, U_PN) in ESL put in ESL, the set of
eslj(x,PNj) with type,=type,, X in the same position as
esl, and 13'Nj a known proper noun, in the same posi-
tion as U_PN in esl,

- ESL, be the set of esls in PN_esl defined as follows:
for each esl(x, U_PN) in ESL put in ESL, the set of
eslj(w,PNj), with type,=type, w in the same position
as X in esli, Sim(w,x)> €, and PNJ. a known proper
noun, in the same position as U_PN in esl.. Sim(w,x)
is a similarity measure between x and w. In our ex-
periments, Sim(w,x)> € holds if w and x have a
common hypernym H in WordNet. The generality of
H (i.e. the number of intermediate levels L between x
and H ) is a free parameter to which we assign difter-
ent values in order to analyze the effect of
generalization.

¢ For each semantic category C,, compute evidence
(Cpy) as:

Zweight,j(x)~ D(x,C(PN;))

esl; e iSL, ,C(PNj )= Cp.n/'

> weight;(x)-D(x,C(PN )
esl; eliSL,
> weight,; (w)- D(w,C(PN )))
esl, eESL, C(PN)=C,,
> weight,;(w)-D(w,C(PN,))
es e ESLB

evidence(Cpy; ) =

where:

weight, (x) = weight,;(esl,(x, PNj))

b(x)—-1
= pl(esl,(x. PNj))- [1 - amzk(i)lj
weight, (w) = weight, (esl,(w, PN}j))
= pl(esl,(w, PNj))- [1 _ ami(_wi_lj

- pllesi(x, PNJ.)) is the plausibility and amb(esi(x, PNJ.)) is
the ambiguity (according to WordNet) of x in esl,

- ks a constant factor used to incrementally reduce the in-
fluence of ambiguous words. Smoothing is tuned to be
higher in ESL.

- o and B are parametric, and can be used to study the evi-
dence provided by ESL, and ESL,.

- D(x, Cpnj) is a discrimination factor used to determine the
saliency [19] of a context esl, (x, _) for a category Cpnj,
i.e., how good a contex‘E is at discriminating between Cpnj
and the other categories”.

The selected category for U PN is
C=argmax(evidence(C,,y))

When grouping all the evidence of a U PN in the corpus,
the underlying hypothesis is that, in a given application, a PN
has a unique sense. This is a reasonable restriction for PNs,
supported by empirical evidence, though we would be more
sceptical about the applicability of the one-sense-per-discourse
paradigm [12] to generic words. We believe that it is precisely
this restriction that makes the use of syntactic and semantic
contexts appealing.

In simple terms (details are given in [7], [8]), the evidence
formula estimates the probability that the syntactic contexts
around an U_PN co-occur with PNs belonging to a given cate-
gory. The first term computes the (weighted) relative fre-
quency, in semantic category C,, ., of contexts identical to
those occurring with the U PN, while the second term com-
putes the (weighted) relative frequency of contexts "similar" to
those occurring with the U_PN. Notice that in the above for-
mula the frequency of contexts in categories is smoothed by
several factors: the plausibility lessens the weight of syntacti-
cally ambiguous contexts; the discrimination factor strengthens
the weight of contexts that are #ypical of a certain category, i.e.
very frequent in that category and rare in others; the ambiguity
lessens the weight of semantically ambiguous contexts. All
these factors are intended to cooperate at reducing the influ-
ence of unreliable or uninformative contexts. The formula has
also parameters (k, a, ), estimated by running systematic ex-
periments. Standard statistical techniques have been used to
balance experimental conditions and analyse the sources of
variance. These experiments are discussed in section 4.

Figure 1 shows an example of UP_N tagging.

Notice in figure 1 that we used the 8 MUC-7 semantic cate-
gories, with the addition of product. However, only the first
three categories are considered in the experiment described in
the next section. These three categories were generally consid-
ered the hardest to recognize in the MUC-7 competition. The
other categories are usually captured with full success by do-

main-independent rules.

3 For example, a Subject Verb phrase with the verb make (e.g.
Ace made a contract.) if found almost with equal probability
with Person and Organization names. We used a simple condi-
tional probability model for D(x, C ), but other well known
statistical measures of “sparseness” could be used (for exam-
ple, the Dice factor or the Entropy).



U_PN: British_Gas

1.00 G N V_Act British Gas 0 1 nil close

ESLA= 1.00 G_N_V_Act Aetna 1 1 nil close

ESLA= 1.00 G_N_V_Act Alcoa 1 1 nil close

ESLA= 1.00 G N V Act Xerox 1 1 nil close

ESLB= 1.00 G N V Act Eastern 1 1 nil fill

ESLB= 1.00 G N V Act Japanese 9 1 nil fill

ESLB= 1.00 G N V Act Philip L . Hall 3 1 nil fill
ESLB= 1.00 G N V Act Brooks Brothers 1 1 nil shut
ESLB= 1.00 G N V Act Ford 1 1 nil shut

1.00 G_N_V_Act British Gas 0 1 nil finish

ESLA= 1.00 G N V Act China 2 1 nil finish
ESLA= 1.00 G N V Act Communications 1 1 nil finish
ESLB= 1.00 G_N_V_Act Coniston 1 1 nil complete
ESLB= 2.00 G N V_Act Corp_. 1 1 nil complete
ESLB= 1.00 G_N_V_Act Donaldson 1 1 nil complete
ESLB= 1.00 G_N_V_Act Soviets 1 1 nil complete
ESLB= 1.00 G N V Act Sterling 2 1 nil complete
ESLB= 1.00 G_N V_Act Syms_Corp . 1 1 nil complete
<other esls follow >
oz 0.7000, p: 0.3000
NUM CATEGORY ESLA ESLB EVID

1 ORGANISATION 66.80 114.31 0.54

2 LOCATION 6.98 15.93  0.06

3 PERSON 5.98 43.27 0.09

4 DATE 0.00 5.98 0.02

5 TIME 0.00 0.00 0.00

6 MONEY 0.00 0.00 0.00

7 PERCENT 0.00 0.00 0.00

8 PRODUCT 0.00 0.00 0.00

9 OTHERS 37.90 31.77  0.26

Max evidence category: ORGANISATION
Figure 1: An example of U_PN tagging.

4  Experimental Discussion

4.1  Overview of the experiment

For the purpose of this experiment, we have used part of
the Wall Street Journal (WSJ) corpus. The WSJ corpus con-
tains documents that spread over a broad range of thematic
domains. The subset of the corpus used for the purpose of this
experiment included instances of the 8 types of PN, mentioned
above, but we only used 3 PN categories.

The corpus was pre-processed with the help of the VIE in-
formation extraction system [14]. In VIE PNs are in part de-
tected using a large gazetteer (PN dictionary) of complex and
simple proper nouns. The PNs not detected by the gazetteer are
recognised by a specialised grammar.

As a first pre-processing stage, PNs were recognized as a
syntactic category by the Brill's POS tagger [5], a now widely
used resource. Brill's tagger performance on unknown PNs has
been enhanced by adding simple heuristics to detect also com-
plex nominals: for example, a PN can also be a list of adjacent
capitalised words, or capitalised words with interleaved prepo-

sitions*. Then every PN was classified into a semantic category
according to the results obtained from VIE. We used one half
of the PNs recognised by the Brill tagger to train C4.5 and the
remaining half to test the performance of our method. The de-
cision tree classified some of these unknown PNs into the three
semantic categories, leaving the others unclassified. The prob-
abilistic learning algorithm was then used to assign categories
to as many of the unclassified PNs as possible. The final set of
classified PNs was used to update the initial gazetteer and
evaluate the performance of our method.

The distribution of PNs in the three semantic categories is
shown in Table 1. The numbers correspond to counts of differ-
ent PNs, rather than their instances in the WSJ corpus.
Roughly 50% of the PNs are included in the initial dictionary,
while the remaining 50% is used as test data.

PNs covered by the PNs not covered by the
dictionary (training data) dictionary (test data)
Persons 2397 | Persons 2390
Organisations 1460 | Organisations 1462
Locations 316 | Locations 316
Total 4173 | Total 4168

Table 1. Distribution of PNs in the three semantic categories
for the training and test data.

4.2

As described above, the initial low coverage dictionary was

Learning the decision-tree classifier

applied to the corpus in order to create the training set of fea-
ture vectors for the decision tree-learning algorithm (C4.5). For
every PN in the dictionary, all instances of this particular PN
were located in the corpus and for each located instance one
(or more, due to ambiguity) feature vector was created. The
feature vectors were of fixed length: for every PN the vector
contained features from the first and last two words of the PN,
as well as features from the two words before and after the PN.
Finally the correct category of the PN, according to the dic-
tionary, was included in the feature vector.

The word features encoded in the vector for each word were:
semantically enriched part-of-speech information and addi-
tional morphological information. Details for these features are
given in section 2. In the case of feature absence, usually due
to absence of a word at the specific position, a special feature
value (°?°) was used. This special character is interpreted as
missing information by C4.5. In the case of ambiguity, either
in the semantically enriched part-of-speech or in the additional
morphological information, more than one feature vectors were
created in order to cover all possible combinations of the am-
biguous values. A typical example of a PN and the resulting
vectors are given in Figure 2:

4 Performance of PN recognition is lower than for common
words, but still close to 90% precision.



Identified as PN (pre-processing stage): Pierre Vinken
Dictionary category: person
Features assigned by the pre-processing stage

Sentence: Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Word Semantically Enriched POS Information Additional Morphological Information
. proper_noun singular
Pierre . . .
proper_noun_city invariable
Vinken ? ?
, punct comma invariable
61 adjetive_card-inal number invariable
common_noun invariable

Resulting Feature Vectors:

adjective_cardinal _number,invariable,person.

invariable,person.

invariable,person.

Word order: second word to the left (of the PN), first word to the left, first word (of PN), second word, penultimate word, last
word, first word to the right, second word to the right.

Two features for each of the 8 words, plus the dictionary category at the end of the vector.]

1) 2,2,2,2,proper_noun_city,invariable,?,?,proper_noun_city,invariable,?,?,punct_comma,invariable,

2)  2.2,2,2.proper noun_city,invariable,?,?,proper noun_city,invariable,?,?,punct_comma,invariable,common_noun,

3)  2.2,2,2.proper_noun,singular,?,?,proper_noun,singular,?,?,punct_comma,invariable,adjective cardinal number,

4) 22,22, proper_noun,singular,?,?,proper_noun,singular,?,?,punct_comma,invariable,common_noun,invariable,person.

Figure 2. Encoding of a training vector for C4.5.

The learning algorithm was then trained, using all the fea-
ture vectors that were created from the dictionary. The algo-
rithm induced a decision tree to be used for the classification
of the PNs in the test data. The vectors in the test data con-
tained initially no semantic category and were classified by the
decision tree. The classification was accompanied by a confi-
dence figure, in the range of [0..1], with the confidence level
increasing as this figure increases. All classifications which
had a confidence value below some threshold were removed
and considered unclassified by the decision tree. The threshold
that we used for this experiment was 0.7. This value was de-
termined empirically, by examining the behaviour of the clas-
sifier for different threshold values on the training data. The
outcome of the classification was a list of test vectors, each of
which was associated either with one of the three semantic
categories (person, organisation, location) or with the label
“unknown”, meaning that it was not classified by the decision
tree. In some cases, more than one vector corresponded to the
same PN, due to two reasons: (1) each PN may have several
instances in the corpus and (2) each PN instance may be repre-
sented by several vectors due to ambiguities, as shown above.
In those cases the most frequent semantic category was se-
lected for each PN.

Eventually, 3233 of the 4168 PN in the test set were classi-
fied by the decision tree, 3040 of them correctly, while 935
PNs remained unclassified. The use of a high confidence
threshold (0.7) provided a bias for precision, leading to high

precision (94.3%) in the first phase. At the same time recall
was also at an acceptable level (72.94%). The motivation for
the precision bias is the fact that the PNs that are classitied by
the decision tree are then used as training data in the second
phase. Thus, classification in the first phase should be very
precise, in order to avoid noise in the training data of the sec-
ond phase. However, the PNs that remain unclassified in the
first phase are really the hard cases, making the refinement
task in the second phase, especially hard. In particular, 477 out
of the 935 unclassified PNs appear only once in the text. Such
a low frequency rate makes probabilistic classification very
hard.
4.3  Probabilistic classification of unknown proper
nouns

The 935 PNs not recognized by the PN classifier in Phase 1
were fed to the untrained probabilistic classifier. A contextual
model for the three PN categories was learned by the classifier
using all available classified PNs (i.e., the same initial list of
PNs used as training data by the inductive classifier, plus the
PNs that were classified by the inductive classifier at the end
of the first phase). For this experiment, we used the following
parameters: 0=0.7 =0.3 and generalization level L=1 (i.e.,
only one level of generalization)”.

5 The selected parameter values have given the best results in
previous empirical studies.



Table 2 summarizes the results of the complete experiment®.

Person

Phase A B C D E F G H
1 1767 2390 73.93% 1797 98.33% 521 - -
2 308 521 59.12% 452 68.14% 59 92.26% 86.82%

Organisation

Phase A B C D E F G H
1 1005 1462 68.74% 1100 91.36% 384 - -
2 262 384 68.23% 336 7798% 48 88.23% 86.67%

Location

Phase A B C D E F G H

1 268 316 84.81% 336 79.76% 30 - -
2 15 30 50.00% 22 68.18% 8 79.05% 89.56%
Total

Phase A B C D E F G H
1 3040 4168 72.94% 3233 94.03% 935 - -
2 585 935 62.57% 810 7222% 125 89.66% 86.97%

Legends
Phase 1: Decision tree classifier

Phase 2: Probabilistic Contextual classifier

A:  PNs correctly tagged at the end of Phase X (X=1,2)
in the Test Corpus

Total Unknown PNs in the Test Corpus before Phase
X

Local Recall after Phase X (A/B)

Total PNs detected at the end of Phase X

Local Precision after Phase X (A/D)

Total PN still unknown at the end of Phase X
Global Precision (Phase 1 + Phase 2)

Global Recall (Phase 1 + Phase 2)

=

Table 2. Experimental results.

The performance of the probabilistic classifier in isolation is
somewhat lower than this reported in [8], however in that ex-
periment the test set followed the same distribution of phe-
nomena as in the domain corpus, while in this experiment the
statistical classifier is requested to tag the "hardest" cases,
those for which C4.5 could not output a decision with a suffi-
cient confidence level.

Despite the difficulty of the task, recall increases substan-
tially in the second phase, reaching 86.97%, while precision
remains high at 89.66%. The combined F-measure is 89,13,
which would position our method among the highest-
performing ones in the MUC competitions. This result is par-
ticularly encouraging, given that we are dealing only with the
hardest three PN categories and assume the existence of only a
low-coverage (50%) PN dictionary.

® Clearly the recall is also affected by errors in PN recognition
by the POS tagger.

5 Conclusions

Current methods for Proper Noun (PN) recognition and clas-
sification perform well, but are admittedly sensitive to domain
and language shifts. Though it may be possible to produce (es-
pecially using the Web) an initial dictionary of domain-specific
PNs, often to achieve an adequate coverage some non-trivial
amount of manual work is necessary, for dictionary extension,
rule writing and manual tagging of texts.

In this paper we presented an integrated classification
method for the automatic extension of a PN dictionary. The
method combined two learning approaches: supervised learn-
ing of decision-tree classifiers and unsupervised probabilistic
learning of syntactic and semantic context. The supervised
learning algorithm used the information in the initial PN dic-
tionary and a training corpus to construct a decision tree that
assigned semantic categories to PNs, which were not in the
initial dictionary. Only high-confidence classifications were
accepted, imposing a bias for high precision. Despite this fact,
performance in terms of recall was also good. In a second
phase, unsupervised learning was used to increase recall and
assign a semantic category to those PNs that were still unclas-
sified. In this phase, we investigated the effectiveness of using
syntactic contexts and semantic generalization for categorizing
unknown PN in running text. Similar techniques have been
applied (alone or in combination) to the more general task of
word sense disambiguation, with no clear-cut results. In the
case of PNs, however, certain favourable conditions (espe-
cially the applicability of the one-sense-per-domain hypothe-
sis) favour the good performance of this technique. Remarka-
bly, our combined method achieved both high recall (86.97%)
and precision (89.66%), while imposing limited requirements
on the coverage of the initial PN dictionary. These results are
among the highest reported in the literature and were achieved
on three PN categories that are considered hard to recognize:
person, organization and location. But the main advantage of
our method is the low initial requirement, that is a 50% cover-
age PN dictionary, while all MUC systems require more or less
heavy manual work for rule writing or text tagging.

The results presented here suggest that the combined method
that we presented is appropriate for PN recognition. However,
we need to evaluate the method further and compare it directly
to some of the existing high-performing systems, possibly on
the data used for the MUC comparisons. Before doing that,
though, we would like to improve on the simple method that
we are currently using for the identification of PNs in text.
This step is essential, in order to construct a complete NERC
system. An alternative direction that we are examining is to
apply the method to other problems, such as word sense dis-
ambiguation. If the good performance that we achieved on PN
recognition carries over to these other problems, we might be
able to propose it as a more general method for sense tagging.
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