
BlogBuster: A tool for extracting corpora from the blogosphere
Georgios Petasis1,2, Dimitrios Petasis1

1Intellitech S.A.
P.O. BOX 8055, GR-19300, Aspropirgos, Greece.

E-mail: petasisg@yahoo.gr, d_petasis@hotmail.com

2Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research (N.C.S.R.) “Demokritos”,
P.O. BOX 60228, Aghia Paraskevi,

GR-153 10, Athens, Greece.
E-mail: petasis@iit.demokritos.gr

Abstract
This paper presents BlogBuster, a tool for extracting a corpus from the blogosphere. The topic of cleaning arbitrary web pages with the
goal of extracting a corpus from web data, suitable for linguistic and language technology research and development, has attracted
significant research interest recently. Several general purpose approaches for removing boilerplate have been presented in the literature;
however the blogosphere poses additional requirements, such as a finer control over the extracted textual segments in order to
accurately identify important elements, i.e. individual blog posts, titles, posting dates or comments. BlogBuster tries to provide such
additional details along with boilerplate removal, following a rule-based approach. A small set of rules were manually constructed by
observing a limited set of blogs from the Blogger and Wordpress hosting platforms. These rules operate on the DOM tree of an HTML
page, as constructed by a popular browser, Mozilla Firefox. Evaluation results suggest that BlogBuster is very accurate when
extracting corpora from blogs hosted in the Blogger and Wordpress, while exhibiting a reasonable precision when applied to blogs not
hosted in these two popular blogging platforms.

1. Introduction
The huge amount of the available information found in
the World Wide Web has been very attractive to
researchers in natural language processing, especially in
practical areas dominated by statistical and machine
learning based approaches, where access to large volumes
of data is highly desirable. The traditional way of
constructing textual corpora, despite the fact that it is a
time consuming and expensive process targeting corpora
quality, may be inadequate to fulfil the current
requirements of applications, especially the ones targeting
the WWW. However, extracting corpora from the WWW
is not an easy process, posing various difficulties in
almost all steps of the extraction process as it is evident by
the relevant research area represented by conferences
such as Web as Corpus (WAC4, 2008; WAC5, 2009) and
competitions such as CLEANEVAL (2007).

In general, the process of extracting a corpus from the
WWW can be decomposed into the following major
tasks:

1. Web crawling: the task of guided or automated
browsing of the web, in order to identify web
pages that should be downloaded and included
into the corpus.

2. Web page download: the task of downloading the
web page from the hosting web server, ensuring
that the proper encoding conversions are applied
so as the saved copy of the web page does not
contain invalid data.

3. Web page cleaning: the task of extracting the
desired elements from the web page, usually
extracting the textual data from an HTML web
page.

Several approaches have been presented in the literature
that try to extract a corpus from the web, ranging from
stripping the HTML elements from HTML web pages, to
complex systems that employ machine learning to induce
generic wrappers that identify and extract text blocks, i.e.
(Spousta et. al., 2008). Most of these approaches usually
apply heuristics to deal with problems such as malformed
HTML code, or revert to specialised tools that try to
disambiguate errors in HTML, such as HTML Tidy
(Raggett, 2000) or CyberNeko HTML Parser (Clark and
Guillemot, 2002), that usually convert HTML into a
normalised form known as XHTML (W3C, 2000).

However, downloading a web page and converting it
to text may not be enough for constructing a corpus. Since
the HTML standard was designed mainly as visual
description language, a web page may contain parts that
exist only for providing a pleasant visual layout to the
reader. In addition, the vast majority of current web sites
contain modules that provide advertisements, site
navigation links and other unwanted information that
must be removed before extracting the page content. The
process of identifying the blocks or parts of an HTML
web page that contains useful information is known as
page segmentation, and is usually a necessary task when
aiming to construct a corpus that satisfies some quality
requirements. Since efficiency of page segmentation

largely depends on the visual layout of the web sites, the
difficulty of this task usually depends on the number of
sources that needs to be handled. Several approaches have
been proposed for the task, from site-specific wrapper
induction, to machine learning approaches (Spousta et. al.,
2008) or even approaches that combine semantic
information, such as the distribution of named-entities
(Petasis et. al., 2008).

The rest of the paper is organised as follows: section 2
discusses work related to the presented approach, while
section 3 presents the requirements and motivation behind
BlogBuster. Section 4 presents the extraction engine,
followed by an evaluation presented in sections 5 and 6.
Finally, section 7 concludes and outlines plans for future
research.

2. Related work
The CLEANEVAL-1 (2007) competition targeted the
topic of cleaning arbitrary web pages, with the goal of
extracting a corpus suitable for linguistic and language
technology research and development from web data.
Providing a gold standard corpus for the English and
Chinese languages, participant systems were evaluated
and compared. The participant systems mainly employ
machine learning algorithms to classify HTML fragments
into various categories, based on a wide variety of
features. For example, NCleaner (Evert, 2008) uses
simple character-level n-gram language models in order
to distinguish between clean body text and boilerplate
(navigation bars, page headers, link lists, disclaimers,
copyright statements, advertisements, etc.). Victor
(Spousta et. al., 2008) employs a sequence-labelling
approach, based on Conditional Random Fields, where
every block of text is classified into content and noisy
segments, using a set of features extracted from the
textual content and HTML structure of an HTML
document. Similarly, in (Kohlschütter et. al., 2010)
decision trees are applied on shallow text features in order
to classify the individual text elements of an HTML page.
However, the use of machine learning does not
necessarily ensure high performance: The BTE tool
(Ferraresi et. al., 2008), which outperformed all
CLEANEVAL-1 participants in the text-only task of the
competition, uses heuristics based on the observation that
the content-rich section of an HTML page has a low
HTML tag density, while boilerplate exhibits a much
higher density of HTML tags.

Other approaches try to exploit structural information,
mainly contained in the DOM (Document Object Model)
tree of an HTML page, in order to identify common, i.e.
frequently used patterns or segments, usually
concentrated on specific web sites. (Chakrabarti et. al.,
2007) try to determine the “templateness” of DOM nodes,
by training Logistic regression classifiers over a set o
features, such as closeness to the margins of an HTML
page, number of links per word, fraction of text within
anchors, size of anchors, etc. At a second level, smoothing
is applied on the classifier scores of DOM nodes using
regularised isotonic regression to improve performance.

Yi et. al. (2003) extract a “Site Style Tree” from HTML
pages of a web site that tries to distinguish DOM nodes
that contain actual content from presentation styles.

Despite the fact that many approaches for boilerplate
removal exist, a greater level of detail may be required
when dealing with the blogosphere. Removing the
boilerplate may not be enough, as usually individual blog
posts may need to be identified in the index page of a blog,
along with the title and date of each blog post. Similarly,
in an HTML page containing a single blog post, the
identification of individual comments may also be
desirable. This increased level of detail in extracting
textual segments from blogs along with the scarcity of
approaches that can provide this level of detail, was the
driving motivation for BlogBuster, the tool described in
this paper.

3. Requirements
Blogosphere is a web source that is characterised by the
visual layout diversity, as each blog uses its own visual
layout and theme. Such diversity will pose even more
problems to existing page segmentation approaches, as
there are too many layouts and themes that must be
considered. Even commercial services that specialise into
mirroring and organising the blogosphere, such as spinn3r
(2007), do not attempt to perform the task of segmenting
blog pages and extract information such as the blog post
title, the blog post date and the blog post text, elements
essential in order to construct a corpus from blogs.

The presented tool –BlogBuster– specialises in
extracting a corpus from blogs, and in many aspects of the
task follows a different approach, partly because it
specialises only in processing the blogosphere. The
requirements during the design of BlogBuster can be
summarised into the following ones:

1. Cross-platform: the tool must not be bind to a
specific operating system.

2. Robust: the tool must be as robust as possible
both in its results, but also in the handling of
invalid HTML code and dynamic content.

3. Cover as much part of the blogosphere as
possible with adequate efficiency, without the
efficiency being affected by the visual layout and
theme diversity.

In order to fulfil these requirements, the following
decisions were made with respect to the development of
the tool:

1. The tool must be integrated with a cross-platform
and popular web browser.

2. The engine that extracts the various pieces of
information must operate over the DOM tree of
the blog page, as constructed by the browser.

3. The extraction engine must be easily
configurable and adaptable to various
application requirements. In case of inadequate
performance, application of heuristics that
improve performance must be an easy task.

Mozilla’s rendering engine (Gecko 1

1. Adequate handling of invalid or malformed
HTML pages. Instead of relying on heuristics of
HTML Tidy or NecoHTML, the correction
facilities of a popular web browser are used. In
addition, it is highly probable that blog authors
do not allow errors in their blogs that will cause
rendering errors in widespread browsers.

) was chosen as a
basis for BlogBuster. Despite the complexity in using this
rendering engine, it was chosen because it is compliant to
WWW standards and widely adopted (being the base for
applications like Firefox, Thunderbird, Camino, Flock,
SeaMonkey, K-Meleon, Netscape-9 and many others).
The usage of such infrastructure as a basis provides many
advantages over existing approaches:

2. Ability to download and store locally a blog web
page, by applying the proper character encoding
conversions.

3. Ability to retrieve and store content that is
generated dynamically (i.e. as a result of
Javascript execution). Such content is constantly
gaining in popularity and will be missed by any
existing approach that does not understand and
execute Javascript.

The BlogBuster tool performs the following actions upon
receiving a URL of a blog (either the index/front page of a
blog, or any other page containing a single blog post) to
be processed:

1. Instructs the rendering engine to download and
render the URL. The rendering engine
downloads and applies style-sheet information,
creating a visual representation of the web page
identical to what a web browser would provide.

2. Instructs the rendering engine to execute any
available Javascript code that must be executed.

3. The text extraction engine of the BlogBuster tool
is invoked to operate upon the constructed by the
rendering engine DOM (Document Object
Model) tree. This extraction engine is
responsible for identifying suitable DOM nodes
that contain the required information, and extract
the information from these nodes.

4. Collect the information extracted by the
extraction engine, encode the results in the
requested format (i.e. XML, JSON, plain text,
etc.) and return the information to the caller.

4. The extraction engine
BlogBuster’s extraction engine is implemented in the
dynamic language Tcl/Tk2

1 http://en.wikipedia.org/wiki/Gecko_(layout_engine).

, allowing for rapid prototyping
and easy adaptation to various applications. The current
application targets the extraction of individual blog posts,
blog post titles and blog post publication dates from an
HTML blog page, either the front page of a blog or a page
containing a single post. However, the implementation of

2 Tcl/Tk is an open source language, distributed under the BSD
license. More information can be found at http://www.tcl.tk.

the extraction engine is generic enough to account for
processing of additional sources, such as forums or
portals. BlogBuster’s text extraction from blogs has been
implemented on the assumption that the vast majority of
blogs are generated (and usually hosted) by only two very
popular content management systems (CMSs): the
Blogger 3 platform provided by Google, and the
WordPress 4

The current extraction engine operates on a small set
of heuristics/rules, manually constructed by examining a
limited set of HTML blog pages (~30 from both the
Blogger and Wordpress platforms). The construction of
these rules was based on the following observations:

 CMS. Based on this assumption, the
implemented extraction engine ignores all information
that depends on visual layout and style/theme, and instead
concentrates on the metadata stored by the CMSs on
DOM node elements, like element ids and classes.

1. The usage of the <div> HTML tag is extremely
widespread for the definition of structure and
visual layout in blogs.

2. A <div> element can be found that encloses the
text of a single blog post.

3. A <div> element can be found that encloses a
single blog post comment (for blog posts that
have comments).

4. All blog posts have a title. Titles are frequently
contained inside a separate <div> element (but
not always).

5. All blog posts do not have a date. Availability
and location of dates with respect to a blog post
seem to depend on the visual layout and the
theme of the blog, along with a decision of the
blog owner to display a date. Dates, when
available, may be incomplete (i.e. the year or
month may be omitted). Dates are not usually
contained inside a <div> element that contains
only the date.

The thematic domain of the observed blogs was related to
blogs that comment on the news, written in the English
language. More information about how these blogs were
collected can be found in the section of experimental
setting. The algorithm of the implemented extraction
engine can be described as follows:

1. Collect all <div> elements from the DOM tree of
a blog HTML page. For each such element,
identify whether it contains a blog post or not.

a. A <div> element is considered as
containing a blog post if any of its
attributes matches any of the following
regular expressions: “post*”,
“*hentry*”, “divlog”, “*entry*post*”,
“*post-*”, “snap_preview”.

2. Extract the text from each <div> element
identified as containing a blog post.

a. The text of a <div> DOM node is

3 https://www.blogger.com/start
4 http://wordpress.com/

extracted if the class of the node
matches any of the following regular
expressions: “*post-body*”, “posts”,
“entry”, “content”, “*entry-content*”,
“snap_preview”.

b. Else, try to locate a <div> element node
that is a child of the node under
examination, whose class matches any
of the following regular expressions:
“*post-body*”, “posts”, “entry*”,
“content”, “*entry-content*”, “text”,
“entrybody”. If a suitable node can be
located, the text of the node is extracted
and returned.

c. In all other cases, the <div> node under
examination is assumed to not contain a
blog post.

3. For each <div> DOM node that text was
extracted, try to identify the title of the blog post.

a. Examine all children nodes of type
<h3>, <h2>, <a> (in this order). If any
node attribute matches any of
“*post-title*”, “*entry-title*”, or
“*title*”, the node is assumed to
contain a title and its text is extracted
and returned.

b. Else, examine all previous sibling
nodes, sorted by their proximity to the
<div> node under examination. If a
sibling node is of type <h1>, <h2>,
<h3>, <h4>, and <h5>, extract the
sibling node text and return it as the
title.

c. In all other cases, declare a missing title
for the blog post.

4. For each <div> DOM node that text was
extracted, try to identify the date of the blog post.

a. If a child <div> node can be found,
whose class matches any of
“*posted-in*”, “datepost”, “entrymeta”,
or “date”, extract the text and return it
as the posting date of the blog post.

b. If a child <div> node can found, whose
class matches any of “postinfo”, “info”,
or “*-head”:

i. If a child node can
found, with an attribute
matching “postdate” or “date”,
extract the text and return it as
the date of the blog post.

ii. If a child <small> node can be
found, with an attribute
matching “postdate”, “date”,
“*time*”, or “*date*”, extract
the text and return it as the
date of the blog post.

c. Else, examine all previous sibling
nodes, sorted by their proximity to the
<div> node under examination. If a

sibling node is of type <h1>, <h2>,
<h3>, <h4>, <h5>, , <small>,
and has an attribute value that matches
“*date-header*”, or “*date*”, extract
the sibling node text and return it as the
date of the blog post.

d. In all other cases, declare a missing date
for the blog post.

As it is evident from the algorithm, segmenting a blog
HTML page (either containing multiple posts or a single
blog post) is a fairly easy process, while locating the title
and especially the date is a more challenging task. In
addition, the algorithm does not make any assumptions
regarding the actual content and does not use any features
from it, allowing operation over languages other than
English. The algorithm has been tested on blogs written in
French, German and Greek, obtaining results similar to
those of blogs written in English. The algorithm mainly
assumes that <div> elements are used to construct the
structure of pages, and that these <div> elements contain
attributes whose names roughly describe the type of the
contained content, a feature quite frequent in CMSs that
are designed to separate the content from the visual
appearance, which can be customized through templates
and styles. Finally the algorithm does not deal with
comments that can be found in blog posts, which are
ignored (not contained in the text extracted from blog
HTML pages). However, the analysis of the limited set of
blog pages during rule construction suggests that
comments can be handled by the described approach.

5. Experimental setting
BlogBuster’s extraction engine was manually constructed
from a limited set of about 30 blogs (originating from
blogs hosted in the Blogger and Wordpress platforms),
and it was evaluated on the front pages from 416 blogs.
The evaluation corpus was collected using the following
approach5

1. A small set of news agency portals were selected
(i.e. www.usatoday.com, www.nytimes.com,
www.fox.com, www.reuters.com, www.cnn.com,
www.bbc.co.uk, etc.)

:

2. A small set of news items (~500) were collected
from these sites, concerning news about sports,
technology, and world politics.

3. Search keywords were extracted from the
collected news items, by extracting all words
from the titles of news items, along with
distinctive words identified through TF/IDF.

4. Google’s web and blog search was used to
collect blogs for each news item, from both
Blogger and WordPress. For each news item and
hosting platform, the first 64 results were kept.

5 The corpus collection approach targeted in creating a parallel
corpus from news and blogs, with blog posts commenting on the
news events contained in the HTML pages collected from the
news agencies.

5. Technorati’s 6

Since blogs from the Blogger and Wordpress platforms
have been used during the development of the extraction
engine, blogs from these two platforms were randomly
removed to reduce their number, in order to minimize the
bias of the evaluation corpus towards these two platforms.
No blogs used during the development of the extraction
engine were present in the evaluation corpus. The
characteristics of the evaluation corpus are shown in the
following table:

 search was also used to collect
blogs for each news item, without any restriction
on the hosting platform.

Total number of blogs 416
Blogs from Blogger (*.blogspot.com) 49 (12%)
Blogs from Wordpress (*.wordpress.com) 28 (7 %)

Table 1: Characteristics of the evaluation corpus

6. Evaluation Results
The BlogBuster corpus extraction tool was evaluated on
blog front pages (containing multiple blog posts)
collected from 416 blogs. Several experiments have been
contacted in order to evaluate various aspects of the
approach, including the performance in extracting single
blog posts, titles of blog posts and posting dates, for blogs
hosted in the Blogger or Wordpress platforms, but also on
blogs not hosted by these two platforms. The performance
of BlogBuster was evaluated in terms of recall and
precision.

The first evaluation was performed on blogs hosted by
the Google’s Blogger hosting platform. The obtained
results are shown in the following table:

 Precision Recall F-Measure

Blog posts 100.00 % 85.71 % 92.30 %
Title 97.62 % 83.67 % 90.11 %
Date 90.48 % 77.55 % 83.52 %

Table 2: Performance on blogs from Blogger.

BlogBuster exhibits a good performance when extracting
corpora from blogs hosted in the Blogger platform,
mainly because the rules of the extraction engine originate
from observations performed on this CMS. Precision of
locating individual blog posts inside a blog HTML page
containing multiple blog posts is high due to the rules
used by the extraction engine: a single blog post is the
central item detected by the extraction algorithm, before
the extraction of other details (such as titles or dates) is
attempted. In addition, the rules try to match only a small
set of regular expressions over the attributes of DOM
nodes that can contain the text of a single blog post,
providing a bias towards precision instead of favoring
recall. Performance for titles and posting dates is also at
acceptable levels. The lower performance for dates can be
attributed to various layouts used by blogs: dates can

6 http://www.technorati.com/

appear along with the title, below the title, along with the
author name, or at the end of a post, constituting their
accurate detection difficult. In some cases, dates may not
be present in a blog (these cases were counted as an
extraction failure of BlogBuster during evaluation).
Finally, depending on the blog, the date may contain
additional information along with the blog post
publishing date, i.e. the name of the author or the number
of comments. This can happen if all this all extracted
textual information was contained inside a single DOM
node, which is the finest level of detail the proposed
approach can achieve. These cases were evaluated as
correct, as the date was contained in the extracted text.

The performance of BlogBuster on blogs hosted in
Wordpress can be seen in the following table:

 Precision Recall F-Measure
Blog posts 100.00 % 96.43 % 98.18 %
Title 77.78 % 75.00 % 76.36 %
Date 29.63 % 28.57 % 29.09 %

Table 3: Performance on blogs from Wordpress.

The performance of extracting individual blog posts
remains at adequate levels, with titles and especially dates
exhibiting lower performance. This decrease in
performance can be attributed to the fact that fewer blogs
from Wordpress were examined during the rule
construction phase, as only 10 blogs hosted in Wordpress
were used.

The third evaluation experiment was conducted on the
entire corpus available, as mentioned in Table 1
(including blogs from Blogger and Wordpress). The
evaluation results can be seen in Table 4.

 Precision Recall F-Measure
Blog posts 100.00 % 52.64 % 68.98 %
Title 90.41 % 47.60 % 62.36 %
Date 31.51 % 16.59 % 21.73 %

Table 4: Performance on all blogs of the evaluation corpus
(Table 1).

The corpus contains a large percent (~80 %) of blogs that
are not hosted in the platforms used during rule
construction, allowing the possibility to be
hosted/generated by alternative CMSs. BlogBuster was
able to extract individual blog posts and titles with high
accuracy, achieving at the same time a recall around 50 %.
Performance of extracting dates was lower, but this is
expected given the positional variation that dates exhibit
among blogs.

7. Conclusions – Future Work
In this paper we presented BlogBuster, a tool for
extracting a corpus from the blogosphere. Several general
purpose approaches for removing boilerplate have been
presented in the literature; however the blogosphere poses

additional requirements, such as a finer control over the
extracted textual segments in order to accurately identify
important elements, i.e. individual blog posts, titles,
posting dates or comments. Besides boilerplate
elimination, BlogBuster attempts to identify and convert
into text such information, following a rule-based
approach. A small set of rules was manually constructed,
guided by observations made from a limited set of blogs.
The corpus used during the rule construction phase
contained randomly selected blog pages from blogs
hosted in the Blogger and Wordpress hosting platforms.

BlogBuster was evaluated on a corpus different than
the one used for rule construction. The evaluation corpus
was collected from blogs returned by the Google’s and
Technorati’s search APIs. Queries have been formed from
words contained in news articles, collected from online
news agencies. Blogs that were hosted in either Blogger
or Wordpress were randomly removed from the results,
until the percentage of the remaining ones was about 20 %
of the corpus. Evaluation results showed that BlogBuster
is very accurate in extracting individual blog posts and
their titles from the evaluation corpus, with a recall
approaching 50 % for both tasks. Identifying and
extracting dates was less accurate, exhibiting an
F-measure around 20 %. In addition, BlogBuster exhibits
increased stability over malformed HTML pages, as it is
build on top of a popular browser, Mozilla Firefox.
Incorporating such a complete and full-featured browser
allows the processing of dynamically generated content,
i.e. generated through Javascript.

As future work, we plan to automate the acquisition of
rules used by the extraction engine from a small annotated
corpus. We think that automatic acquisition may help in
cases where more complex rules are required, such as the
extraction of dates where manually constructed rules
exhibit limited coverage. Also, we plan to distribute the
evaluation corpus, once a suitable annotation scheme is
designed, and proper obfuscation is applied on the actual
content to cater for copyright issues.

The BlogBuster tool can be freely accessed as a web
service for research purposes. Finally, a live demo of
BlogBuster can be found at:
http://www.intellitech.gr/index.php/lang-en/solutions-ma
inmenu-28/blog-processing.

8. References
Baroni, M., Chantree, F., Kilgarri, A., Sharo, S. (2008).

Cleaneval: a competition for cleaning web pages. In
Proceedings of the 4th Web as Corpus Workshop
(WAC4), - Can we beat Google?. N. Calzolari, K.
Choukri, B. Maegaard, J. Mariani, J. Odjik, S. Piperidis,
and D. Tapias, editors, Proceedings of the 6th
International Language Resources and Evaluation
(LREC 2008). Marrakech, Morocco, 2008.

Chakrabarti, D., Kumar, R., and Punera, K. (2007).
Page-level template detection via isotonic smoothing.
In Proceedings of the 16th International Conference on
World Wide Web, pp. 61 – 70, New York, USA, 2007.

Clark, A., Guillemot, M. (2002). The CyberNeko HTML
Parser. http://nekohtml.sourceforge.net/

CLEANEVAL (2007). http://cleaneval.sigwac.org.uk/
Evert, S. (2008). A lightweight and efficient tool for

cleaning web pages. In Proceedings of the 6th
International Language Resources and Evaluation
(LREC 2008), Marrakech, Morocco, May, 2008.
http://www.lrec-conf.org/proceedings/lrec2008/.

Ferraresi, A., Zanchetta, E., Baroni, M., and Bernardini, S.
(2008). Introducing and evaluating UKWAC, a very
large web-derived corpus of English. In Proceedings of
the 6th International Language Resources and
Evaluation (LREC 2008), Marrakech, Morocco, May,
2008. http://www.lrec-conf.org/proceedings/lrec2008/.

Kohlschütter, C., Fankhauser, P., and Nejdl, W. (2010).
Boilerplate Detection using Shallow Text Features. In
Proceedings of the 3rd ACM International Conference
on Web Search and Data Mining, New York City, NY
USA, 2010.

Petasis, G., Fragkou, P., Theodorakos, A., Karkaletsis, V.,
Spyropoulos, C. D (2008). Segmenting HTML pages
using visual and semantic information. In Proceedings
of the 4th Web as a Corpus Workshop (WAC2008), 6th
International Language Resources and Evaluation
Conference (LREC 2008), pp. 18 – 25, Marrakech
(Morocco), June 1, 2008.

Raggett, D. (2000). The HTML Tidy Library Project.
http://tidy.sourceforge.net/,
http://www.w3.org/People/Raggett/tidy/

Spinn3r, (2007). Indexing the blogosphere.
http://spinn3r.com/

Spousta Miroslav, Marek Michal, and Pecina Pavel
(2008). Victor: the Web-Page Cleaning Tool. In
Proceedings of the 4th Web as Corpus Workshop
(WAC4), - Can we beat Google?. 6th International
Language Resources and Evaluation Conference
(LREC 2008). Marrakech, Morocco, 2008.

W3C, (2000). XHTML™ 1.0: The Extensible HyperText
Markup Language. http://www.w3.org/TR/xhtml1/

WAC4 (2008). The 4th Web as Corpus Workshop, 6th
International Language Resources and Evaluation
Conference (LREC 2008), Marrakech, Morocco, 1 June
2008.
http://webascorpus.sourceforge.net/PHITE.php?sitesig
=CONF&page=CONF_40_WAC-4___lb__2008__rb_
_

WAC5 (2009). The 5th Web as Corpus Workshop, San
Sebastian, Basque Country, Spain, 7 September 2009.
http://www.sigwac.org.uk/wiki/WAC5

Yi, L., Liu, B., and Li, X., (2003). Eliminating noisy
information in web pages for data mining. In
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 296 – 305, 2003.

http://nekohtml.sourceforge.net/�
http://cleaneval.sigwac.org.uk/�
http://www.ellogon.org/petasis/component/option,com_docman/task,doc_download/gid,63/Itemid,37/�
http://www.ellogon.org/petasis/component/option,com_docman/task,doc_download/gid,63/Itemid,37/�
http://tidy.sourceforge.net/�
http://spinn3r.com/�
http://ufal.mff.cuni.cz/~pecina/publications/wac4-2008.pdf�
http://www.w3.org/TR/xhtml1/�
http://webascorpus.sourceforge.net/PHITE.php?sitesig=CONF&page=CONF_40_WAC-4___lb__2008__rb__�
http://webascorpus.sourceforge.net/PHITE.php?sitesig=CONF&page=CONF_40_WAC-4___lb__2008__rb__�
http://webascorpus.sourceforge.net/PHITE.php?sitesig=CONF&page=CONF_40_WAC-4___lb__2008__rb__�
http://www.sigwac.org.uk/wiki/WAC5�

	BlogBuster: A tool for extracting corpora from the blogosphere

