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Abstract. In this paper we present eg-GRIDS, an algorithm for induc-
ing context-free grammars that is able to learn from positive sample
sentences. The presented algorithm, similar to its GRIDS predecessors,
uses simplicity as a criterion for directing inference, and a set of opera-
tors for exploring the search space. In addition to the basic beam search
strategy of GRIDS, eg-GRIDS incorporates an evolutionary grammar
selection process, aiming to explore a larger part of the search space.
Evaluation results are presented on artificially generated data, compar-
ing the performance of beam search and genetic search. These results
show that genetic search performs better than beam search while being
significantly more efficient computationally.
Keywords: grammatical inference, context-free grammars, minimum
description length, genetic algorithms, positive examples

1 Introduction

In this paper we present eg-GRIDS, an algorithm for inducing context free gram-
mars solely from positive sample sentences. This algorithm is an enhancement
of the e-GRIDS algorithm [10], which was based on the GRIDS algorithm as
it appeared in [6], which in turn is based on earlier work by Wolff [18], [19]
and his SNPR system. The presented algorithm, similar to its predecessors, uses
simplicity as a criterion for directing inference, a set of operators for exploring
the search space and a basic beam search strategy. However, eg-GRIDS extends
e-GRIDS by employing additional search operators and an evolutionary gram-
mar selection process in addition to the basic beam search strategy, aiming to
explore a larger part of the search space. Evaluation results on artificially gener-
ated data from context-free grammars suggest that eg-GRIDS performs better
than e-GRIDS and that the evolutionary grammar selection process significantly



improves the processing efficiency and scalability of eg-GRIDS over its previous
version.

The majority of grammatical inference algorithms presented in the literature
share a common methodology. Based on an initial set of positive training ex-
amples, an overly specific grammar is constructed that is able to recognise only
these examples. Then, a set of operators generalises this initial grammar, usu-
ally with respect to a set of negative examples, i.e. sentences that should not be
recognised by the grammar. The existence of negative examples is a requirement
of many algorithms, due to the need to limit the extent of generalisation. If in
a given inference step a grammar is produced whose language is larger than the
unknown target language, this is irreversible since no positive example could
ever supply information to detect this error. Overly general grammars can be
detected if negative examples are available, since the language of such a grammar
is likely to include some negative examples. Thus, a learning algorithm that uses
negative examples in this manner should primarily prevent overspecialisation (or
over-fitting), as overgeneralisation can be controlled by the negative examples.
On the other hand, a learning algorithm that has to learn solely from positive
examples must prevent both overspecialisation and overgeneralisation. However,
as the absence of negative evidence often arises in practice, two solutions have
been proposed in order to alleviate this problem:

– Restricted classes of formal languages have been proven to be learnable from
positive examples, such as reversible languages [1], k-testable languages [3],
code regular and code linear languages [2], pure context-free languages [5],
[17] and strictly deterministic automata [20].

– Various heuristics aiming to avoid overgeneralisation without the use of neg-
ative examples have been proposed [12], [6].

The eg-GRIDS algorithm presented here belongs to the latter category and uses
simplicity as a heuristic for directing the inference process, based solely on posi-
tive information. Viewing grammars as code, the heuristic utilised in eg-GRIDS,
based on Minimum Description Length (MDL) [11], seeks to compress the gram-
mar itself, as well as the encoding of the training sentences by the grammar.

Section 2 discusses work related to our approach, whereas section 3 presents
the architecture, heuristics, search operators and search strategies employed by
eg-GRIDS. Section 4 reports on an evaluation of eg-GRIDS on examples gener-
ated from an artificial3 context-free grammar. Finally, section 5 concludes and
outlines plans for future research.

2 Related work

eg-GRIDS shares some of its central features with earlier work in grammatical
inference. We have already mentioned that eg-GRIDS originates from GRIDS

3 The term “artificial grammar” is used to describe a grammar devised solely for eval-
uation purposes, which does not necessarily correspond to any real-world problem.



[6] which is in turn based on SNPR [18], [19]. Both GRIDS and SNPR are also
biased towards “simple” grammars, as they use MDL for scoring and selecting
the most plausible grammars.

Although the majority of the work in grammatical inference focuses on reg-
ular grammars, a significant number of algorithms exist that infer context-free
grammars. Stolcke and Omohundro [16], [15] have presented an approach which
infers probabilistic context-free grammars. Using a Bayesian framework, their
system employs learning operators similar to those employed by eg-GRIDS in
order to find a grammar with maximal posterior probability given the training
example set, a criterion essentially equivalent to the MDL. In [13] an algorithm
for inducing context-free grammars from positive and negative structured exam-
ples is presented. A structured example is simply an example with parentheses
that indicate the shape of the derivation tree of the grammar (structural informa-
tion). The learning algorithm employs a genetic search and the CYK algorithm
[4] for converging to a final grammar. An efficient successor of this algorithm can
be found in [7]. A more recent version of this algorithm [14] operates on partially
structured examples instead of complete ones and uses a tabular representation,
leading to a more flexible and applicable algorithm, compared to its predecessor.
The algorithm has been successfully applied to various simple languages as well
as to DNA sequence modelling. Synapse [8] is another algorithm that is based
on CYK. Synapse learns incrementally from positive and negative examples fol-
lowing a top-down search organisation, while preliminary results show that it is
able to infer both ambiguous and unambiguous context-free grammars for simple
languages in reasonable time.

3 The eg-GRIDS algorithm

GRIDS [6] infers context-free grammars solely from positive example sets. It in-
corporates a beam search towards simple grammars with the help of two learning
operators. Being based on GRIDS, eg-GRIDS shares some features with its pre-
decessor:

– grammatical knowledge representation (context-free grammars);
– bias towards simple grammars, based on the same principle, i.e. minimum

description length (MDL);
– two basic learning operators; and
– beam search.

However, eg-GRIDS also has some notable differences with GRIDS:

– it optimises the beam-based search process by using the results of a theoret-
ical analysis of the dynamic behaviour of the learning operators [10];

– it incorporates new learning operators that can lead to more compact gram-
mars; and

– it implements an additional genetic search strategy.



3.1 A bias towards ”simple” grammars

As eg-GRIDS uses no negative evidence, an additional criterion is needed to
direct the search through the space of context-free grammars and avoid overly
general grammars. As we have mentioned above, this criterion provides a bias
towards simple grammars. Following the GRIDS algorithm, we adopt the ap-
proach of minimum description length (MDL), which directs the search process
towards grammars that are compact, i.e., ones that require few bits to be en-
coded, while at the same time they encode the example set in a compact way,
i.e. few bits are required to encode the examples using the grammar.

In order to use MDL, we must measure the encoding length of the grammar
and of the example set, as encoded by the grammar. Assuming a context-free
grammar G and a set of examples (sentences) T that can be recognised (parsed)
by the grammar G, the total description length of a grammar (henceforth model
description length, abbreviated as ML) is the sum of two independent lengths:

– The grammar description length (GDL), i.e. the bits required to encode the
grammar rules and transmit them to a recipient who has minimal knowledge
of the grammar representation, and

– the derivations description length (DDL), i.e. the bits required to encode
and transmit all examples in the set T as encoded by grammar G, provided
that the recipient already knows G.

The first component of the ML heuristic directs the search away from the sort
of trivial grammar that has a separate rule for each training sentence, as this
grammar will have a large GDL. However, the same component leads to the other
sort of trivial grammar, a grammar that accepts all sentences. In order to avoid
this, the second component estimates the derivation power of the grammar, by
measuring the way the training examples are generated by the grammar, and
helps to avoid overgeneralisation by penalising general grammars. The higher
the derivation power of the language, the higher its DDL is expected to be. The
initial overly specific grammar is trivially best in terms of DDL, as usually there
is a one-to-one correspondence between the examples and the grammar rules, i.e.
its derivation power is low. On the other hand, the most general grammar has
the worst score, as it involves several rules in the derivation of a single sentence,
requiring substantial effort to track down all the rules involved in the generation
of the sentence.

Although MDL aims at a minimally compact representation of both the model
and the data simultaneously, it does not provide means for creating the models,
i.e. given a set of models that describe the same example set, MDL can only
be used as an evaluation metric to decide which model is better. As a result,
MDL cannot provide any help on how the space of possible models should be
searched, in order to converge to a satisfactory model. In grammatical inference,
MDL simply offers a mechanism for comparing grammars and selecting the one
that is more “compact” with respect to both the length of the grammar as well
as the encoding of the training set by the grammar.



3.2 Architecture of eg-GRIDS and the learning operators

The architecture of eg-GRIDS is summarised in figure 1. Like many other gram-
mar inference algorithms, eg-GRIDS uses the training sentences in order to con-
struct an initial, “flat” grammar. This initial grammar is constructed by simply
converting each one of the training examples into a grammatical rule4. As a
result, the number of initial rules corresponds to the number of training exam-
ples. This initial grammar is overly specific, as it can recognise only the sen-
tences contained in the training set. After the initial grammar has been created,
eg-GRIDS tries to generalise this initial grammar, with one of the two search
processes: beam or the genetic search. Both search strategies utilise the same
search operators in order to produce more general grammars.

Fig. 1. The architecture of the eg-GRIDS algorithm.

Currently, eg-GRIDS supports five search operators:

Merge NT: merges two non-terminal symbols into a single symbol, thereby
replacing all their appearances in the head and the body of rules.

Create NT: creates a new non-terminal symbol X, which is defined as a se-
quence of two or more existing non-terminal symbols. X is defined as a new
production rule that decomposes X into its constituent symbols.

Create Optional NT: duplicates a rule created by the “Create NT” operator
and appends an existing non-terminal symbol at the end of the body of the
rule, thus making this symbol optional.

4 The body of each rule is a sequence of non-terminal symbols, as each terminal is
mapped initially to a unique non-terminal.



Detect Center Embedding: aims to capture the center embedding phenome-
non. This operator tries to locate the most frequent four-gram5 of the form
“AABB”. Once such a four-gram is located, the operator creates a new non-
terminal symbol X as the operator “Create NT” would have done. However,
assuming that this four-gram was created through center embedding involv-
ing symbol X, this operator additionally creates a new production rule of
the form “X → AAXBB” and replaces all symbol sequences that match the
pattern “A + X? B+” with X.

Rule Body Substitution: examines whether the body of a production rule
R is contained in bodies of other production rules. In such a case, every
occurrence of the body of rule R in other rule bodies is replaced by the head
of rule R.

The five operators create grammars that have either the same or greater expres-
siveness than their parent grammar. As the operators never remove rules from a
grammar, the resulting grammars have at least the same coverage as the parent
grammar, i.e. they can recognise at least the same set of sentences.

The choice of operators was motivated mostly by practical needs. The “Merge
NT” and “Create NT” operators are fundamental: in principle these two oper-
ators can create any CFG structure, subject to the search involved for finding
the right sequence of operators. The “Rule Body Substitution” operator helps
to reduce redundancy in the grammar. Finally, the “Create Optional NT” and
“Detect Center Embedding” operators operate as heuristics, and try to acceler-
ate the search process focusing on important predetermined structures. Clearly,
many more similar heuristics can be devised. However, it should be noted that all
operators simply suggest new grammars. The final choice over what suggestions
should be accepted is always left to the MDL.

3.3 Search strategies

Beam search The first search strategy implemented by eg-GRIDS is a beam
search. Having an initial hypothesis (the initial grammar) in the search beam,
eg-GRIDS uses five “modes” (one mode for each search operator) in order to
explore the space of context-free grammars.

During learning, eg-GRIDS constantly alternates among the five modes,
where each mode is characterised by the repetitive application of the same op-
erator. Each mode initiates with a beam (beam A) containing the current gram-
mars. For each grammar in beam A, all possible ways of applying the operator
corresponding to the mode are examined. For example, the mode for the “Cre-
ate NT” operator considers all ways of creating new symbols from all possible
n-grams found in a grammar6, while the mode for the “Merge NT” considers all
5 Since bigrams and trigrams are quite common (frequent) structures and their pres-

ence can be attributed to a large number of phenomena, we assume that four-grams
are the smallest n-grams that indicate possible existence of center embedding.

6 All possible n-grams are examined, with n ranging from two (bigrams) to the length
of the longest rule in the grammar.



ways of merging non-terminal symbols by repeatedly applying the “Merge NT”
operator. For each operator application, a successor grammar is created and the
best grammars according to the MDL form the new beam (beam B).

After all grammars in beam A have been examined, beams A and B are
compared. If any of the grammars in beam B scores better than a grammar in
beam A, beam A is replaced by beam B and the algorithm continues in this mode.
However, if none of the grammars in beam B scores better than the grammars
in beam A, then beam B is discarded and eg-GRIDS switches to another mode.

The algorithm continues alternating among the five modes until it is unable
to produce a successor grammar that scores better than the ones in beam A. At
that stage, the learning process terminates.

Genetic search The second search strategy implemented by eg-GRIDS is based
on genetic algorithms. A genetic algorithm consists of four basic elements:

1. the evolutionary process, describing among other things which individuals
should survive, reproduce or die;

2. the representation for individuals;
3. the set of genetic operators; and
4. the objective function for scoring individuals.

Regarding the evolutionary process, a variety of genetic algorithms is avail-
able in eg-GRIDS7. For the representation of individuals we have chosen to use
the context-free grammars directly, rather than a special mapping that con-
verts a grammar into a string. As a result, the choice of objective function was
straightforwardly MDL. Regarding the set of genetic operators, eg-GRIDS can
be considered to perform “informed mutation”, using its five search operators.

More specifically, the genetic algorithm selects a grammar and an offspring
grammar is produced from it as follows:

1. A search operator is randomly8 chosen from the five operators.
2. The chosen operator is applied to the selected grammar, producing the off-

spring.
3. In case the chosen search operator requires additional information, e.g. the

two non-terminal symbols that should be merged by the “Merge NT” oper-
ator, the required parameter values are randomly chosen from the set of all
suitable values, e.g. all non-terminals for the “Merge NT” operator.

4 Experimental evaluation

In this section we evaluate the eg-GRIDS algorithm experimentally, focusing
mainly on its performance on learning from examples generated from artificial
context-free grammars.
7 The eg-GRIDS software uses the GAlib genetic algorithm package, written by

Matthew Wall at the Massachusetts Institute of Technology. Available from
http://lancet.mit.edu/ga/.

8 All random selections in our experiments were based on a uniform distribution.



4.1 Evaluation metrics for artificial grammars

Evaluation in grammatical inference presents peculiarities and common metrics
that are used for supervised learning tasks, like recall and precision, are not
directly applicable. Alternatively, in order to evaluate an inferred grammar we
have to compare it against the “correct” grammar, so as to identify their simi-
larity. However, even if the “correct” grammar is known, which is not the case in
most real-world situations, the problem of determining whether two context-free
grammars are equivalent is not an easy task: Given two context-free grammars
G1 and G2, there exists no algorithm that can determine whether G1 is more
general than G2 (i.e. L (G1) ⊇ L (G2) or if L (G1)∩L (G2) = ∅, where L (G) the
language of grammar G [9], [4].

As a result, during evaluation we mainly focus on measuring three aspects
of the inferred grammar [6]:

– errors of omission (failures to parse sentences generated by the “correct”
grammar), which indicate that an overly specific grammar has been learned,

– errors of commission (failures of the “correct” grammar to parse sentences
generated by the inferred grammar), which indicate that an overly general
grammar has been learned, and

– ability of the inferred grammar to parse correctly sentences longer than the
sentences used during training, which indicates the additional expressiveness
of the learned grammar.

In experiments with artificial context-free grammars, where the “correct”
grammar is known, to estimate these figures we use the original (or “correct”)
grammar GO and the learned grammar GL to generate a large number of sen-
tences. Errors of omission can be estimated as the fraction of the number of
sentences generated by GO that are not parsed by GL to the total number of
sentences generated by GO. Errors of commission can be estimated as the frac-
tion of the number of sentences generated by GL that are not parsed by GO

to the total number of sentences generated by GL. Errors of omission and er-
rors of commission measure the overlap of the two grammars. In the ideal case,
both of these figures must be zero, indicating that all sentences generated by
one grammar can be parsed by the other. In order to estimate the third figure,
example sentences must be generated from GO that have greater length than the
ones used for training. This figure can then be estimated as the fraction of the
number of sentences that were successfully parsed by GL to the total number of
generated sentences.

4.2 The balanced parenthesis language

Our experiments examine the learning behaviour of eg-GRIDS on the Dyck
language, not only because it is a context-free language but also because e-
GRIDS comes very close into learning it [10], but fails to converge to the correct



grammar for a small number of the used training sets. Hence, we evaluate eg-
GRIDS using the Dyck language with k = 1:

S → S S|( S )| ∈ (1)

In the experiments that we have conducted, we have generated a large num-
ber of unique sentences9 top-down from the above grammar, using a uniform
distribution for selecting randomly when expanding ambiguous non-terminals.
The generated example sentences were randomly shuffled. Then, we defined an
arbitrary maximum length Lmax = 20 tokens10 for the examples. The resulting
set (subset A) was used for evaluation according to the first two figures, i.e.
errors of omission and commission. Thus, a second test set was created (subset
B), containing example sentences with lengths greater than Lmax but lower than
a second arbitrary maximum length (25 tokens). This second set is the set that
was used in order to calculate the third figure, i.e. the ability to parse sentences
longer than the ones used for training. All sets were populated by randomly se-
lecting example sentences from the generated sentences. Special care was taken
in order to ensure that the same sentence did not appear both in the training
and the test sets.

As the Dyck language with k = 1 cannot be used to generate a large num-
ber of example sentences if we restrict the maximum sentence length, we have
performed a ten-fold cross validation. Thus, subset A is split into ten subsets of
equal size and the experiment is repeated 10 times: each time 9 subsets of A are
used for training eg-GRIDS and the learned grammar is evaluated on the 10th

unused set, augmented with a test set created from subset B.
Figures 2 and 3 show the results of this experiment for the e-GRIDS algo-

rithm (eg-GRIDS’ predecessor), as presented in [10]. As it is evident from figure
2, e-GRIDS comes very close to learning the target grammar, as its performance
approaches 0.95 with a training set size of 900 example sentences and remains
around 0.90 for greater example set sizes. Regarding example sentences longer
than the ones used for training (figure 3), e-GRIDS exhibits a similar behaviour.
Finally, e-GRIDS never converges to a grammar that could produce ungram-
matical sentences, i.e. it has zero errors of commission.

The same experiment was repeated for the eg-GRIDS algorithm, using the
extended operator set and the genetic grammar selection strategy, with the
“steady-state” genetic algorithm, an algorithm supporting overlapping popu-
lations. The first observation from the results was a significant improvement in
terms of errors of omission. There were no such errors for sentences with length
up to 20 words, even for very small training sets, while the situation is similar
even for longer test sentences, as can be seen in figure 4.

An interesting difference between the two algorithms is the fact that eg-
GRIDS seems to converge to more general grammars than the target grammar
for small training set sizes, thus producing ungrammatical sentences (figure 5).
9 All example sets used in our experiments contain unique example sentences, i.e. an

example set of size 900 contains 900 distinct example sentences.
10 A token is either a single left parenthesis “(” or a right one “)”.
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Genetic search allows eg-GRIDS to search a larger space of possible grammars,
mainly due to the diversity of the grammars maintained in evolving populations.
We believe that this diversity helped eg-GRIDS to converge to “better” gram-
mars than e-GRIDS, even if these grammars are more general than the target
one for small training set sizes.

5 Conclusions

In this paper, we presented the eg-GRIDS algorithm for inducing context-free
grammars solely from positive evidence. eg-GRIDS utilises a heuristic based on
minimum description length to avoid overgeneralisation, a consequence of the
absence of negative evidence. Its main advantages are the fact that implements
a genetic search strategy and has a richer set of search operators, offering eg-
GRIDS the ability to adapt easier to a wider range of tasks and perform better
than its predecessors.

Regarding the learning performance of eg-GRIDS, experiments have been
conducted with the help of artificially generated examples. Our results have
shown that eg-GRIDS is able to infer grammars that perform well, based on
relatively small sets of training examples. The addition of the genetic search pro-
cess, besides the increase in the performance of the algorithm, has also increased
significantly the processing efficiency of the algorithm, and thus its scalability to
more complex tasks. Preliminary results show that eg-GRIDS is more than an
order of magnitude faster than e-GRIDS, due to the less exhaustive nature of its
search. Future work will focus on the effect of the newly added search operators.
Preliminary results suggest that eg-GRIDS can achieve very good performance
on the Dyck language with k=2, a task beyond the capabilities of e-GRIDS.

Concluding, the work presented here has resulted in a new algorithm that
alleviates some of the shortcomings of its predecessors, with special attention
given to robustness and efficiency. We believe that eg-GRIDS will be useful
in modelling various subparts of natural languages and identifying these sub-
parts in texts, a task that cannot be easily modeled by other machine learning
approaches, at least those that expect fixed-length vectors as input. Interest-
ing tasks that fit this description include noun phrase chunking, named-entity
recognition and information extraction.
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