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In this paper we present a new computationally efficient algorithm for inducing context-free 
grammars that is able to learn from positive sample sentences. This new algorithm uses simplicity 
as a criterion for directing inference, and the search process of the new algorithm has been opti-
mised by utilising the results of a theoretical analysis regarding the behaviour and complexity of 
the search operators. Evaluation results are presented on artificially generated data, while the scal-
ability of the algorithm is tested on a large textual corpus. These results show that the new algo-
rithm performs well and can infer grammars from large data sets in a reasonable amount of time. 
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1 Introduction 
In this paper we present a new algorithm for inducing context-free grammars solely from positive ex-
ample sentences, e-GRIDS, based on the GRIDS algorithm as it appeared in [15], which in turn is 
based on earlier work by Wolff [34,35] and his SNPR system. Like its predecessors, the new algo-
rithm utilises a simplicity bias for inferring context-free grammars from positive examples only. Spe-
cial attention has been given to the processing efficiency and the scalability of the algorithm to large 
example sets. Its inference process has been optimised using the results of a theoretical analysis re-
garding the dynamic behaviour of the search operators and the complexity associated with each action 
performed during the search process. 

The vast majority of grammar inference algorithms presented in the literature share a common 
methodology. Based on an initial set of positive training examples, an overly specific grammar is con-
structed that is able to recognise only these examples. Then, a set of operators generalises this initial 
grammar, usually with respect to a set of negative examples, i.e. sentences that should not be recog-
nised by the grammar (Figure 1). The existence of negative examples is a requirement of most algo-
rithms, due to the need to limit the extent of generalisation, as an overly general grammar will never 
be refuted from a new positive example. If in a given inference step a grammar is produced whose 
language is larger than the unknown target language, this is irreversible since no positive example 
could ever supply information to detect this error. Overly general grammars can be detected if nega-
tive examples are available, since the language of such a grammar is likely to include some negative 
examples. Thus, a learning algorithm that uses negative examples in this manner should primarily pre-
vent overspecialisation (or over-fitting), as overgeneralisation can be controlled by the negative ex-
amples. On the other hand, a learning algorithm that has to learn solely from positive examples must 
prevent both overspecialisation and overgeneralisation. 
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The learnability of various language classes, either in the 
Chomsky hierarchy or not, has been extensively studied in 
the literature. In the two relevant reference models used in 
the Learning theory, namely Gold’s [12] identification in the 
limit model and Valiant’s [32] probably approximately cor-
rect (PAC) model, results are not encouraging, even for one 
of the simplest classes of formal languages, i.e. the class of 
regular languages. According to Gold [12], if a class of lan-
guages contains all finite languages and at least one infinite 
language, it is not identifiable in the limit from only positive 
examples. As a result, regular grammars are not learnable 
from positive examples in Gold’s model. Furthermore, An-
gluin [2] proves that context free grammars are not learnable 
from positive examples in polynomial time, even when the 
learner can pose membership queries. The situation is even 
worse in the PAC learning model, as it has been shown that ev
PAC learnable [6,7]. However, it should be noted that these the
scenarios. Thus, their relevance to real-world grammar inductio
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resentative domain where negative examples are rarely av
(NLP), where large sets of positive examples may be available
the absence of negative evidence often arises in practice, two s
alleviate this problem: 

• Restricted class
ples, such as reversible languages [3], k-testable langu
languages [8], pure context-free languages [14,31] and 
Various heuristics aiming to avoid overgeneralisation
have been proposed [25,15]. 

e-GRIDS algorithm presented
ic for directing the inference process, based solely on posit

GRIDS algorithm is similar to that of many grammar inferen
e-GRIDS is based on the GRIDS algorithm (“GRammar Indu
thus incorporates a bias towards simple grammars while sear
grammars as code, the heuristic utilised in e-GRIDS, based on
seeks to compress the grammar itself, as well as the encoding
mar. 

Ho
tage of the GRIDS algorithm is associated with the search

the space of possible grammars. As each operator exhaustive
duced by its application on the parent grammar, GRIDS canno
a large number of examples or that utilise a large vocabulary.
we have studied the dynamic behaviour of the learning operato
sis have led to optimisations that let e-GRIDS handle large
provement relates to the introduction of a new learning operat
plores the space of possible grammars, allowing it to converg
fore. Furthermore, e-GRIDS improves GRIDS’ “simplicity”
measurement under specific circumstances. Finally, the implem
to easily modify various aspects of the search process and even

Section 2 presents the grammatical knowledge represent
IDS, and the architecture of the algorithm. Section 3 des

their complexity and dynamic behaviour during search process,

 
1 The implementation of e-GRIDS (both in source and binary form) is
at http://www.iit.demokritos.gr/∼ petasis/GI.html. 
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tion 4 reports an evaluation of e-GRIDS’ learning behaviour, including its scalability to large gram-
mars. Section 5 discusses work related to our approach, whereas section 6 concludes and outlines 
plans for future research. 
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As we have already noted, grammatical inference from positiv
ence from example sets where negative evidence is also present. In order to compensate for the lack of 
negative evidence, a learning algorithm may either learn restricted classes of formal languages that are 
proven to be learnable from positive examples, or utilise heuristics to avoid overgeneralisation. 

Like GRIDS, e-GRIDS follows the latter paradigm by incorporating a heuristic that pe
rly general grammars. This choice was partly motivated by our long-term goal of using e-GRIDS 

to learn natural language. For this reason, we wanted to learn grammars of a language class that can 
represent a large variety of linguistic phenomena. This requirement has led to the exclusion of re-
stricted languages, as they are not expected to be able to represent naturally many of the frequently 
observed linguistic phenomena. The ideal candidate for natural language learning is the class of con-
text-sensitive grammars that is sufficiently expressive to represent almost any linguistic syntactic phe-
nomenon. However, context-sensitive grammars have been avoided, due to their various computation-
ally undesirable properties, such as undecidability and parsing complexity. Furthermore, there is some 
disagreement in the literature as to whether natural languages are context-free or not2, only a few 
linguistic phenomena, such as cross-serial dependency, seem to need the expressiveness of context-
sensitive grammars. These hard phenomena are infrequent and can be restricted in practice, allowing 
the language to be modelled with less expressive grammars. For these reasons, we have opted for con-
text-free grammars instead of context-sensitive ones. 

GRIDS [15] infers context-free grammars solely f
ic search towards simple grammars in the space of possible grammars and uses three learning op-

erators. The application of the operators is organised in a beam search. Being based on GRIDS, e-
GRIDS shares four features with its predecessor: 

• grammatical knowledge representation (co
• bias towards simple grammars, based on the same principle, i.e. m
• two basic learning operators; and 
• beam search approach. 

ev r, e-GRIDS also has som
• it optimises the search process by using the results of a theor

haviour of the learning operators; 
it incorporates a new learning oper

• it uses a more accurate simplicity measure based on MDL. 

 fo lowing sections describe these points in more detail, focusin
two algorithms. 

Each grammar in e-GRIDS consists of a set of conte
expressed using a set of non-terminal symbols (e.g. phrases in natural languages) and a set of terminal 
symbols (e.g. words). The set of non-terminal symbols contains a special start symbol (“S” denoting a 
sentence). Each production rule consists of a head and a body, in the following form: 
 

N 
	�…
BodyHead

ZYX →  

 
2 Some languages, such as Swiss German and Dutch, have been shown not to be context free. 

 3



where X, Y, …, Z represent single symbols. The head (or left-hand side of the rule) consists of only one 
non-terminal symbol while the body (or right-hand side) may contain one or more symbols, either 
terminal or non-terminal ones. The interpretation of a production rule is that one can replace every 
occurrence of the rule head with the rule body in recognizing or generating a sentence. Like GRIDS 
and earlier work [33], we make the following assumptions about the form that the production rules can 
take: 

1. No production rule can have an empty head. 
2. Rules of the form “X → Y” are permitted only if the symbol “Y” is a terminal symbol, i.e., a 

non-terminal symbol cannot be mapped to another non-terminal. 
3. Every non-terminal symbol appears in the recognition or derivation of some sentence (positive 

example). 
In addition we make the following assumption: 

4. Terminal symbols are allowed only in rules of the form “X → Y”, not in rules with longer bod-
ies. This assumption prevents terminal symbols from occurring in rules with more than one 
symbol in their body and is the inverse of the second assumption mentioned above. 

These four assumptions do not affect in any way the representation power of a grammar, as any con-
text-free grammar (CFG) can be converted to a grammar that complies with them [13]. The purpose of 
the fourth assumption is to allow the generation of grammars with lower description length, as will be 
shown in section 1. An example of a simple context-free grammar is given in Table 1. 

 
S → NP VERB1 
S → NP VERB2 
NP → ART NOUN 

ART → the 
NOUN → dog 
VERB1 → ran 
VERB2 → barked 

The dog ran 
The dog barked 

Table 1: An example of a simple CFG and the complete set of sentences that can be generated or 
parsed by this grammar, as presented in [15]. 

More formally, a CFG is a quadruple ( ), , ," "NT TG V V P S=  where VNT is a set of non-terminal 
symbols, VT is a set of terminal symbols, P is a set of production rules for generating valid sentences in 
the language and " "  is a special symbol called the start symbol. The set of context-free pro-
duction rules P is constructed using the start symbol, symbols from the set of non-terminals V

NTS V∈
NT, and 

symbols from the set of terminals VT. Each production rule is of the form βα → , where NTVα∈ , 

1=α  and . ( )*
NT TV Vβ ∈ ∪

2.3 e-GRIDS Search: A bias towards “simple” grammars 
As e-GRIDS uses no negative evidence, an additional criterion is needed to direct the search through 
the space of context-free grammars and avoid overly general grammars. As we have mentioned above, 
this criterion provides a bias towards simple grammars. Viewing both the grammar and the training 
examples as code, a grammar A is considered simpler than a grammar B if the sum of 

(a) the number of bits required to encode grammar A, and 
(b) the number of bits required to encode the training examples as derivations of grammar A 

is lower than the corresponding sum for grammar B. In this section we introduce the simplicity metric 
used in e-GRIDS. 

As the inference process has to guard against both overly specific grammars and overgeneralisa-
tion, there are two kinds of trivial grammar we want to avoid. The first kind is a grammar that has a 
separate production rule for each example in the training set and does not generalise at all to new, un-
seen examples. The other kind of trivial grammar we want to avoid is a grammar that accepts any ex-
ample. Following the GRIDS algorithm, we adopt the approach of minimum description length 
(MDL), which directs the search process towards grammars that are compact, i.e., ones that require 
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few bits to be encoded, while at the same time they encode the example set in a compact way, i.e. few 
bits are required to encode the examples using the grammar. 

The central idea behind MDL analysis [23] can be decomposed into four basic steps: 

1. The construction of a model, based on the example set. 
2. The use of this model to encode (compress) the example set and assign a length to its com-

pressed form, usually based on notions from information theory. 
3. The calculation of the length of the model, using again notions from information theory. 
4. The search for the best possible model, corresponding to the minimisation of the sum of the 

length of the compressed example set and the model length. 

In simple words, MDL aims at a minimally compact representation of both the model and the data, 
simultaneously. Note that MDL does not provide means for creating the models, i.e. the search strat-
egy for step 4. In grammar inference, MDL simply offers a mechanism for comparing grammars and 
selecting the one that is more “compact" with respect to both the length of the grammar as well as the 
encoding of the training set by the grammar. Ideally we would like to know how the grammar com-
presses the complete language, but since this is not available, we assume that the training set is a rep-
resentative sample of the language. 

In order to use MDL, we must measure the encoding length of the grammar and of the example set, 
as encoded by the grammar. Assuming a context-free grammar G  and a set of examples (sentences) 

 that can be recognised (parsed) by the grammar G , the total description length of a grammar 
(henceforth model description length, abbreviated as ML) is the sum of two independent lengths: 
T

• The grammar description length (GDL), i.e. the bits required to encode the grammar rules and 
transmit them to a recipient who has minimal knowledge of the grammar representation, and 

• the derivations description length (DDL), i.e. the bits required to encode and transmit all exam-
ples in the set T , provided that the recipient already knows the grammar G . 

 
ML GDL DDL= +   

 
The first component of the ML heuristic directs the search away from the sort of trivial grammar that 
has a separate rule for each training sentence, as this grammar will have a large GDL. However, the 
same component leads to the other sort of trivial grammar, a grammar that accepts all sentences. In 
order to avoid this, the second component estimates the derivation power of the grammar (or alterna-
tively the language of the grammar) and helps to avoid overgeneralisation by penalising general 
grammars. The obvious way to measure the derivation power of a grammar is to count all derivations, 
i.e. the sentences that can be generated. However, this is not always possible or desirable, as usually 
grammars generate an infinite language through recursion. Even if somebody could count all the deri-
vations of a grammar, in most cases the result would have been a very large number compared to the 
length of the grammar, making the heuristic unusable. As a result, the derivation power is measured by 
examining the way the training examples are generated by the grammar. The higher the derivation 
power of the language, the higher its DDL is expected to be. The initial overly specific grammar is 
trivially best in terms of DDL, as usually there is a one-to-one correspondence between the examples 
and the grammar rules, i.e. its derivation power is low. On the other hand, the most general grammar 
has the worst score, as it involves several rules in the derivation of a single sentence, requiring sub-
stantial effort to track down all the rules involved in the generation of the sentence. 

In the remaining of this subsection, we focus on the calculation of the GDL and the DDL. 

Grammar Description Length (GDL) 
In order to count the bits required to transmit a grammar  to a recipient, we have to decide on the 
way the grammar will be encoded and transmitted. Our approach is based on the separation of the rule 
set into three independent subsets that are transmitted sequentially. The first subset contains all the 
rules of the grammar  whose head is the start symbol of the grammar (start symbol subset – ). 

The second subset contains all the rules of the form “X  Y” (terminal subset – ). Finally, the 
third subset contains all the rules of G  that are not in the first two subsets (non-terminal subset – 

G

G 1SB
→ 2SB
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3SB ). The reason for this separation is the fact that the first two subsets present features that can be 
used to reduce the number of bits required to encode the corresponding rules. In general, the number 
of bits required to encode a single production rule is: 
 

Rule Head Body End of ruleBits Bits Bits Bits= + +   
 
In other words, the total number of bits needed for encoding a rule is the sum of the bits required to 
encode the rule head (  and its body )HeadBits ( )BodyBits . Furthermore, when we transmit the gram-

mar, a special unique symbol (e.g. “STOP") should be appended to each rule in order to signal the end 
of the rule to the recipient, since rule bodies can have variable lengths. This special symbol is treated 
as a non-terminal requiring  bits to be encoded.  EndBits

Supposing that the grammar G  has  unique non-terminal symbols, excluding the special 
“STOP” symbol, the bits required to encode a single instance of a non-terminal is

UNTA
3: 

 
( )1log2 += UNTNT ABits   

 
where the additional non-terminal is the “STOP” symbol. Supposing also that the grammar has T 
unique terminal symbols (i.e. words), the number of bits required to encode a single instance of a ter-
minal symbol is: 
 

( )2logTBits T=   
 
The rules in the start symbol subset present the special property of having as head the grammar start 
symbol. This property can be used to encode this subset in a more compact way, as there is no need to 
encode the head of each rule: this head is common for all rules and is known to the recipient. As a re-
sult, in order to encode one rule of the start symbol subset, the following expression can be used: 

 

( ) ( )log 1 log 1Rule UNT UNT
NT

in rule body

Bits A A
∀

⎛ ⎞
⎜ ⎟= + +⎜ ⎟⎜ ⎟
⎝ ⎠
∑ +   

 
Although the reduction seems to be of little significance, as we simply remove a small number of non-
terminal symbols compared to the total number of symbols that need to be encoded, it has an impor-
tant side effect: the total number of unique non-terminal symbols (AUNT) is reduced by one.  

Regarding the terminal subset, containing the rules of the form “X → Y” (“Y” being a terminal), 
all rules contained in the subset have a fixed length, since their body contains only one terminal sym-
bol. Thus, no special “STOP” symbol is required to signal the end of the rule. In this case, the bits 
required to encode a rule from the second subset can be expressed as: 

 
( ) ( )log 1 logRule UNTBits A T= + +   

 
The total grammar description length (GDL) is the sum of the bits required to encode each one of 

the three subsets of the grammar G, plus two additional “STOP” symbols required to separate the 
three subsets: 

 

                                                      
3 All logarithms in this document are assumed to be of base 2. For purposes of readability, we won’t include the 
logarithm base in equations. 
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( )

( )

:

:

NT STOP
rule in NT

Start Symbol in rule body
Subset

STOP

NT T
rule in

Terminal
Subset

Start Symbol Subset
GDL Bits Bits Body NTs STOP

Nobits needed for Head

Bits Subset Separator
Terminal Subset
Head Bod

Bits Bits

∀ ∀

∀

⎛ ⎞
⎜ ⎟= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

+

+
+ +

∑ ∑

∑

:

STOP

NT NT STOP
rule in NT

Non-terminal in rule body
Subset

y
No STOP symbol
required

Bits Subset Separator

Non Terminal Subset
Bits Bits Bits Head Body NTs

STOP∀ ∀

⎛ ⎞
⎜ ⎟
⎝ ⎠

+

−⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

 (1) 

 
where  STOP NTBits Bits=
Note that the way we have chosen to encode the grammar makes four assumptions about the knowl-
edge the recipient has of the grammar G: 

• The recipient knows the set of terminal symbols. 
• The recipient knows that the rule set of the grammar is divided into three subsets and the order 

in which these subsets are transmitted. 
• The recipient knows how a rule is transmitted in each subset. 
• The recipient knows the fact that two subsequent “STOP” symbols signal the beginning of a 

new rule subset. 
An example of calculating the GDL of a simple grammar G is shown in Table 2. 

AUNT   = 5 (with out “S” and “STOP”)         AUT   = 4 
BitsNT = log(5+1) = 2.58 

Start Symbol Subset 
S → NP VERB1 
S → NP VERB2 

STOP  

2 2.58 1 2.58⋅ + ⋅ +
2 2.58 1 2.58

 
⋅ + ⋅ +

1 2.58
 

⋅ +   

Terminal Subset 
ART → the 
NOUN → dog 
VERB1 → ran 
VERB2 → barked 

STOP  

( )1 2.58 1 log 4⋅ + ⋅ +  

( )1 2.58 1 log 4⋅ + ⋅ +  

( )1 2.58 1 log 4⋅ + ⋅ +  

( )1 2.58 1 log 4⋅ + ⋅ +

1 2.58
 

⋅ +   

Non-Terminal Subset 
NP → ART NOUN  3 2.58 1 2.58⋅ + ⋅  

 

Total GDL: 16 2.58 4 2 49.28⋅ + ⋅ = Bits 

Table 2: Calculating the grammar description length (GDL) of a grammar G. 
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Supporting terminals belonging to multiple categories 
In the original GRIDS algorithm, terminals were assumed to be classified into categories, e.g. part-of-
speech categories, which were known by both the sender and the recipient. Based on this assumption 
the sender should only unambiguously identify the word inside each category, thus requiring 

(Number of words in category) bits to encode a single terminal occurrence. However, this encod-
ing assumes that the recipient is able to identify the category in which an incoming terminal belongs. 
This may be feasible when the head of the terminal rule declares the category. But terminal categories 
are represented by non-terminal symbols that can be modified during the search process. In such a 
case, the recipient has inadequate information to perform the decoding, i.e. when a terminal rule ar-
rives having as head a new non-terminal, the recipient cannot convert it back to the original category 
to which the symbol initially belonged. Measuring the ML of a grammar in such cases is problematic, 
as it does not represent a correct encoding of the grammar. In order to correct this shortcoming, we 
must provide the missing information: in addition to the bits required to encode the terminal, the 
sender must also specify the category in which the terminal belongs. 

log

In response to this problem e-GRIDS introduces a new approach to encoding the terminal symbols 
of the grammar and calculating their participation in the ML. Unifying the way terminal symbols are 
treated with the way non-terminal symbols are treated, e-GRIDS assumes that all terminal symbols 
belong to the same set, thus requiring ( )log Number of UniqueTerminals  to encode a single occur-
rence of a terminal symbol. An interesting side effect of the fact that terminals in e-GRIDS are not 
grouped is the ability to handle terminals that are classified into more than one category, which can be 
useful for example when the terminal symbols are words belonging to multiple syntactic categories. 

Derivations Description Length (DDL) 
The derivations description length measures the number of bits required to encode and transmit a set 
of sentences, as recognised (parsed) by a grammar  (or equivalently generated by that grammar), 
provided that the recipient already knows . The set of sentences here is the set of training examples. 
Encoding the way an example is generated/parsed by a grammar  simply requires the unambiguous 
specification of all the rules involved in the generation/parsing of the example, i.e. specifying the 
complete derivation/parse tree of the example. As an example of calculating the DDL of a grammar, 
consider the complete set of the derivations of the grammar G  presented in Table 1. 

G
G

G

In order to encode the sentence “The dog ran”, we must specify to the recipient that the first one of 
the two start (“S”) rules must be used. In order to encode this information we need 

 bits. Next, we must analyse the specified rule into its con-
stituents, in this case “NP" and “VERB1”, and we must unambiguously specify which “NP” and 
“VERB1” rule to use. For encoding this information we need 

(log log 2Number of Start Rules =) ( )

( ) ( )log 1 log 1+  bits, since the grammar 
has only one rule that starts with either “NP” or “VERB1”. Since the rule “VERB1” is a terminal rule, 
no further analysis is required. “NP”, on the other hand, can be further analysed into “ART” and 
“NOUN”. Thus, we additionally need ( ) ( )log 1 log 1+  bits to resolve this ambiguity. Since neither 
“NOUN” nor “ART” can be further analysed, the encoding is terminated. As a result, the contribution 
of this sentence DDL∆  to the DDL is log(2) 4 log(1)+ ⋅  bits. The encoding of the second sentence re-
quires exactly the same number of bits (see also Table 1). As a result, the DDL of grammar G , given 
this specific set of sentences, is ( )2 log(2) 8 log 1 2⋅ + ⋅ =  bits. 

An easy and practical way to calculate the DDL of a grammar G  is to assign to each grammar rule 
a frequency, which is simply the number of sentences from the training set in which the rule is in-
volved in generating/parsing. The grammar G  and the associated rule frequencies are shown in Table 
4. 
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The dog ran The dog barked 

 

VERB1NP 

NOUN ART 

S 

log(2) 

log(1) 

log(1) 

log(1) 

log(1)  

 

VERB2NP 

NOUN ART 

S 

log(2) 

log(1) 

log(1) 

log(1)

log(1)  
∆DDL =  log(2) 4 log(1)+ ⋅ ∆DDL = log(2) 4 log(1)+ ⋅  

Table 3: Calculating the contribution to the DDL of two sentences. 

S → NP VERB1 
S → NP VERB2 
NP → ART NOUN 
ART → the 
NOUN → dog 
VERB1 → ran 
VERB2 → barked  

1 
1 
2 
2 
2 
1 
1 

Table 4: The grammar G and the associated rule frequencies. 

In order to calculate the DDL of the grammar, we can simply iterate over the rules of the grammar, 
calculating the DDL of each rule. If the rule belongs to the start symbol subset, we must unambigu-
ously distinguish the rule from all other rules in the subset. The number of bits required to encode this 
“disambiguation" is given by the logarithm of the number of rules that share the same head. Then, for 
every non-terminal symbol X  in the rule body, we add to the DDL the number of bits required to un-
ambiguously specify a rule that has X  as head, which depends on the total number of rules that have 
X  as head. Finally, the total number of bits required to encode a single rule should be multiplied by 

the rule frequency, encoding the usage of the rule in the example set. 
For the other two rule subsets, the head of the rule does not need to be encoded, as the required 

number of bits have already been considered in the examination of rule bodies belonging to the start 
symbol subset. Only the non-terminal symbols in rule bodies should be considered. As a consequence, 
there is no need to examine rules belonging in the terminal rule subset, since their bodies contain a 
single terminal symbol that cannot be further analysed. In general, the DDL of a grammar  can be 
calculated as: 

G

 

( ) ( )

( )

log log

log

Start Symbol X rule
rulein X in

Start Symbol Subset rulebody

X rule
rule in X in

Non-Terminal Subset rulebody

DDL H H F

H F

∀ ∀

∀ ∀

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

⋅ +

 (2) 

where: 

•  
1X

Number of times X appears as Head of a rule
H

if X does not appear as Head of a rule
⎧

= ⎨
⎩

• : the rule frequency. ruleF
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2.4 Computational Complexity of measuring the Model Length 
As MDL guides the search process of e-GRIDS, the calculation of ML is a fundamental action that 
needs to be repeated several times. As a result, it is useful to know the complexity associated with this 
calculation. The process of calculating the model length of a grammar, as described by equations 2.1 
and 2.2, can be realised by the simple algorithm shown in Figure 2. 

 
 for each Rule in Grammar { 
  Count the frequency HX of the rule head X  
 } 
 for each Rule in Grammar { 
  for each Symbol in Rule { 
   Update statistics: 
   Occurrence frequency of each Non Terminal 
   Occurrence frequency of each Terminal 
   Frequency of Non-Terminals starting rules 
   ... 
  } 
 } 
 Use the various statistics to measure the model length 

Figure 2: Pseudo-code for calculating the ML of a grammar. 

The algorithm in Figure 2 involves two iterations: the first iteration is needed exclusively for calcu-
lating the DDL, as it concerns the frequency of each rule head (function HX in equation 2.2). During 
the second loop, all symbols within each rule are examined in order to collect the figures for evaluat-
ing equations 2.1 and 2.2 (such as the number of unique non-terminal and terminal symbols, the total 
occurrences of all non-terminal and terminal symbols, and how many times a non-terminal appears as 
the head of a rule). Finally, the model length can be calculated directly from these figures. 

Thus, if R represents the number of rules in the grammar and S the average length of a rule, then 
the complexity of the above process is ( ) ( ) ( )O R O R O S+ ⋅ . The number of rules in the grammar is 
of the same magnitude as the number of training examples (represented by N), at least for the initial 
grammar, which generally has the greatest number of rules among all successor grammars, since MDL 
directs the search to more compact grammars than the initial one. The average length of a rule is a 
characteristic of the training examples and is very often a small number, insignificant compared to the 
number of training examples. As a result, the complexity of measuring the model length (CML) of a 
grammar with respect to the number of training examples N is approximately linear: 

 
( ) ( ) ( ) ( )( ) ( )1MLC O N O N O S O N S O N= + ⋅ = ⋅ + ≈  (3) 

2.5 Architecture of e-GRIDS and the Learning Operators 
As already noted, e-GRIDS induces grammars solely from positive training examples, without requir-
ing any negative evidence. Combined with the fact that it induces context-free grammars rather than 
regular grammars, e-GRIDS is a good candidate for use in domains like natural language processing, 
where negative examples are rarely available and more expressive representations than regular gram-
mars are required. Figure 3 summarises the architecture of e-GRIDS. 
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Figure 3: The architecture of e-GRIDS. 

Like many other grammar inference algorithms, e-GRIDS uses the training sentences in order to con-
struct an initial, “flat” grammar. This initial grammar is constructed by simply converting each one of 
the training examples into a grammatical rule, as in Table 5. 

 
the dog ran 
the dog barked 

⇒  S → THE DOG RAN 
 S → THE DOG BARKED 
 THE → the 
 DOG → dog 
 RAN → ran 
 BARKED → barked 

Table 5: Converting training sentences into an initial grammar. 

As a result, the number of initial rules (not counting ones that replace non-terminals with terminals) is 
equal to the number of the training examples. This initial grammar is overly specific, as it can recog-
nise only the sentences contained in the training example set. The parse trees created by this initial 
grammar are only one level deep, thus characterising the grammar as flat. 

The learning process of e-GRIDS is organised as a beam search. Initially, the beam contains only 
the initial grammar. Having an initial hypothesis (the initial grammar) in the beam, e-GRIDS uses 
three learning operators in order to explore the space of context-free grammars. The “Create NT” – 
CreateNT operator creates a new non-terminal symbol X , which is defined as a sequence of two ex-
isting non-terminal symbols. X  is defined as a new production rule that decomposes X  into its two 
constituent symbols. The “Merge NT” – MergeNT operator merges two non-terminal symbols into a 
single symbol Y , thereby replacing all their appearances in the head and the body of rules by Y . Fi-
nally, the “Create Optional NT” – CreateOptionalNT operator duplicates a rule created by the Creat-
eNT operator and appends a non-terminal symbol to the rule, thus making this symbol optional. The 
three operators create grammars that have either the same or greater expressiveness than their parent 
grammar. As the operators never remove rules from a grammar, the resulting grammars have at least 
the same coverage as the parent grammar, i.e. they can recognise at least the same set of sentences. 

During learning, e-GRIDS iterates among three modes, by the repetitive application of the same 
operator at each mode. In the first mode (the “merge” mode), the algorithm considers all ways of 
merging non-terminal symbols by repeatedly applying the MergeNT operator. This process is repeated 
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for each grammar in the beam, leading to corresponding successor grammars. After all grammars in 
the beam have been examined, the resulting grammars are evaluated. If any of these grammars scores 
equally well or better than one of the grammars in the beam, the successor grammar replaces the 
grammar in the beam that has the lowest score. If at least one of the successor grammars manages to 
enter the beam, the algorithm continues in this mode. 

However, if none of the successor grammars enters the beam, e-GRIDS switches to another mode. 
In the second mode (the “create” mode), e-GRIDS considers all ways of creating new terms from 
pairs of symbols that occur in sequence within the grammar, by repeatedly applying the CreateNT op-
erator, in the same manner as described above for the “merge" mode. Again, the best successor gram-
mars are selected and placed in the beam, thus becoming the current hypothesis for further expansion 
by the CreateNT operator. If none of the successor grammars enters the beam, e-GRIDS switches to 
the last mode, the “create optional" mode. 

The last of the three operators, the CreateOptionalNT operator, examines all ways of duplicating a 
rule by the addition of an optional extra symbol at the end of the rule body. This operator is used re-
peatedly in exactly the same way as the previous two operators. 

The algorithm continues iterating through the three modes until it is unable to produce a successor 
grammar that scores better than the ones in the beam. At that stage, the learning process terminates. 

3 The Search Operators of e-GRIDS 
In the following three subsections we describe in detail the search operators employed by the e-
GRIDS algorithm in order to explore the space of context-free grammars. Particular attention is given 
to the way each operator affects the model description length of the grammar. 

3.1 The “Create NT” Operator 

3.1.1 Description of the operator 
The CreateNT operator creates a new non-terminal symbol that is defined as a sequence of two exist-
ing non-terminal symbols. Renaming a sequence of two symbols “X” and “Y” into a new non-
terminal symbol “Z”, causes the insertion into the grammar of a new rewrite rule “Z  X Y”, which 
decomposes the symbol “Z” into its constituents. Furthermore, all occurrences of the sequence “X Y” 
in the grammar are replaced by the symbol “Z”. Table 6 shows the effect of this operator. 

→

 
Operator “Create NT”: Creating symbol AP1 

NP → ART ADJ NOUN 
NP → ART ADJ ADJ NOUN ⇒

NP → ART AP1 
NP → ART ADJ AP1 
AP1 → ADJ NOUN 

Table 6: The effect of the CreateNT operator, as presented in [15]. 

In natural language grammars, symbols created by this operator will usually represent specific phrases 
and clauses. The introduction of such phrases is useful when certain combinations of words (or sub-
phrases) tend to occur together in sentences. The effect of this operator is a simple representation 
change. As the CreateNT operator simply replaces a sequence of two symbols with a new one, it does 
not increase or reduce the coverage of a grammar, i.e. the resulting grammar recognises exactly the 
same set of sentences as the initial one. Although this operator does not increase the coverage of a 
grammar, the representation change that it achieves is important, preparing the grammar for the appli-
cation of the second operator (the “Merge NT” operator). 

The effect of the application of the CreateNT operator in a grammar can be summarized as follows: 

• All occurrences of the sequence “X Y” are substituted by the non-terminal symbol “Z”. 
• A new rule of the form “Z → X Y” is appended. 
• The coverage of the grammar is not affected, as the insertion of the new rule does not allow 

the grammar to parse new, previously unparsed, example sentences. 
• The DDL of the grammar is not affected. No additional bits are required to unambiguously 

specify the new rule, since it is the only rule having as head the symbol “Z”. 
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• The GDL of the grammar partly increases due to the introduction of a new rule and a new non-
terminal symbol. Introducing a new non-terminal symbol means that more bits are needed in 
order to represent each non-terminal. 

• The GDL of the grammar is also partly reduced, since every occurrence of the sequence “X Y” 
is substituted by “Z”. 

In the following subsections we present some results regarding the complexity and the dynamic behav-
iour of the “CreateNT" operator. 

3.1.2 The complexity of the “Create NT” operator mode 
In this subsection we estimate the complexity of the CreateNT operator and the complexity of a com-
plete “create” step. This step is defined as the process of applying the CreateNT operator over all pos-
sible non-terminal sequences (bigrams) and calculating the model length of all successor grammars. 
The process of performing a “create” step can be realised with the simple algorithm shown in Figure 
4. 

 
 for each Rule in Grammar { 
  for i=0, i< Rule body symbol number -1, i=i+1 { 
   Store_Bigram (symbol[i], symbol[i+1]) 
  } 
 } 
 for each stored Bigram { 
  for each Rule in Grammar { 
  for i=0, i< Rule body symbol number -1, i=i+1 { 
  if Bigram equals “symbol[i] symbol[i+1]” { 
  => Replace “symbol[i] symbol[i+1]” with Bigram 
  } 
  } 
  } 

  Measure Grammar Model Length [ ( )( )1O N S⋅ + ] 
 } 

Figure 4: Pseudo-code of a single “create” step. 

As a first step, all possible sequences (bigrams) must be identified. Doing so requires an iteration over 
all symbols in all rule bodies. The complexity of locating all bigrams is ( )O N S⋅ , assuming that the 

process of storing the bigrams and their occurrence frequencies is of constant complexity ( )( )1O . 

The number of the produced bigrams (represented by K) can be at most K N S= ⋅ . 
As a second step, the CreateNT operator must be applied to all bigrams. The process of applying 

the operator involves an iteration over all symbols in all rule bodies with a complexity of ( )O N S⋅ , 
assuming that the process of replacing symbols in rule bodies is of constant complexity. The complex-
ity of examining all bigrams is ( )( 1O K N S N S⋅ ⋅ + ⋅ + ) . As a result, the complexity of the whole 
step (CCreateNT) is quadratic: 

 
( ) ( ) (2 2 22 2CreateNTC O K N S N S N O N S N S N O= ⋅ ⋅ + ⋅ ⋅ + = ⋅ + ⋅ ⋅ + ≈ )N .  

3.1.3 The effect of “Create NT” on Grammar Description Length 
Assuming a context-free grammar G, which has the following characteristics: 

• AUNT: number of unique non-terminal symbols, excluding the start symbol and the special 
“STOP” symbol. 

• AUT: number of unique terminal symbols. 
• ANT: number of occurrences of all non-terminal symbols, including the start symbol of the 

grammar but excluding the special “STOP” symbol. 
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• AT: number of occurrences of all terminal symbols. 
• AS: number of rules in the start symbol subset. 
• AR: number of rules in the start symbol subset and the non-terminal subset. AR implicitly 

measures the number of “STOP” symbols required to encode the rules of the grammar.  
• BF(X,Y): number of occurrences of the bigram “X Y” that is to be substituted by “Z” in 

grammar G. 
• : number of bits required to encode each occurrence of a non-terminal 

symbol. 
( 1log += UNTNT ABits )

)UT• (logTBits A= : number of bits required to encode each occurrence of a terminal symbol. 

• : number of bits required to encode each occurrence of a non-terminal symbol in the 
resulting grammar, i.e. after the operator has been applied to G. 

Fin
NTBits

The initial GDLIn of G (before the operator is applied) can be calculated as the sum of the bits required 
to encode all non-terminal symbols ( )NT NT S NTA Bits A Bits⋅ − ⋅  plus the bits required to encode all 

terminal symbols ( )T TA Bits⋅  plus the bits required to encode all instances of the special “STOP” 

symbol ( )2R NT NTA Bits Bits⋅ + ⋅ : 
 

( )2In NT R S NT T TGDL A A A Bits A Bits= + − + ⋅ + ⋅   
 
The GDLFin after the operator has been applied can be calculated as: 
 

( )( )2 4 , Fin
Fin NT R S NT T TGDL A A A BF X Y Bits A Bits= + − + + − ⋅ + ⋅   

 
Since the application of the operator inserts a new rule of the form “Z → X Y”, the total number of 
non-terminals increases by four, the three symbols of the new rule plus the “STOP” symbol. On the 
other hand, every occurrence of “X Y” is substituted by “Z”, resulting in savings of 

( ), Fin
NTBF X Y Bits⋅ . Since the number of unique non-terminal symbols increases by one, 

( ) ( 11log1log ++=+= UNT
Fin

UNT
Fin
NT AABits ) . As the DDL is not affected by this operator, the total 

contribution of this operator to the model length (∆ML) of the grammar is equal to the change in GDL 
(∆GDL): 
 

( ) ( )( ) (2
2 log 4 , log 2

1
UNT

NT R S UNT
UNT

A
∆ML A A A BF X Y A

A
⎛ ⎞+

= + − + ⋅ + − ⋅ +⎜ ⎟+⎝ ⎠
)  (4) 

3.1.4 Accelerating the CreateNT operator 
An important property of e-GRIDS is related to computational efficiency. The candidate generation 
procedure of the GRIDS algorithm is an inefficient process, as it is based on the enumeration of all the 
grammars that can be generated by the application of an operator. Applying an operator and scoring 
the new grammar requires a considerable processing effort, especially in large grammars, with a few 
thousand rules and a few thousand terminal symbols. As a result, it is important the process of apply-
ing an operator and scoring the produced grammar to be as efficient as possible, as converging to a 
final grammar may require a substantial number of applications of this fundamental action. 

The results of analysing the dynamic behaviour of an operator can provide valuable help in opti-
mising its application, as these results can be used in order to forecast the model length of a generated 
grammar without applying the operator to generate the grammar. Additionally, in some cases these 
results may reveal information that can be used to restrict the set of symbols on which the operator 
must be applied, thus effectively reducing the operator invocations. 
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Regarding the CreateNT operator, in order to produce a successor grammar with a lower model de-
scription length than the parent one, ∆ML has to be negative. Applying this restriction on equation 4 
leads to the relation: 
 

( ) ( )( ) ( )2
2 log 4 , log 2 0

1
UNT

NT R S UNT
UNT

A
A A A BF X Y A

A
⎛ ⎞+

+ − + ⋅ + − ⋅ + < ⇒⎜ ⎟+⎝ ⎠
  

( )
( )

( )

22 log
1

, 4
log 2

UNT
NT R S

UNT

UNT

AA A A
A

BF X Y
A

⎛ ⎞+
+ − + ⋅ ⎜ ⎟+⎝ ⎠> +

+
 

(5) 

 
The results obtained by this analysis illustrate a property of the CreateNT operator that seems very 
logical and obvious: the substitution of the bigram by a new non-terminal should occur only when the 
two symbols of the bigram tend to appear frequently in sequence. The only parameter that is actually 
independent is the bigram frequency BF(X,Y), since all the other parameters are characteristics of the 
parent grammar. Furthermore, the higher the bigram frequency, the greater the reduction we can 
achieve in the model description length of the successor grammar from the application of the operator. 
As a result, in order to create the N best scoring successor grammars, it suffices to apply the CreateNT 
operator using the N bigrams with the highest frequencies. This optimisation is very simple and drasti-
cally reduces the number of combinations that need to be examined by the CreateNT operator. Addi-
tionally, if the bigram frequency is below the threshold given by equation 5, this bigram should not be 
examined at all by CreateNT, as the resulting grammar will have higher model length than the parent 
grammar. The most important aspect of this optimisation is that it is totally equivalent to the exhaus-
tive enumeration in terms of its effect on the overall search process. This optimisation was also used as 
a heuristic for guiding the search in the SNPR system [34], where it was motivated by intuition. Our 
theoretical analysis supports this intuition and provides the exact relation of the required bigram fre-
quency with the structural properties of the parent grammar. 

Besides the significant reduction in the bigrams that have to be examined, the theoretical analysis 
offers the ability to calculate the model length of the grammar directly from equation 5, without gen-
erating the child grammar. In section 3.1.2 the complexity of a mode step relevant to the CreateNT 
operator was calculated as ( )2 2 2CreateNTC O N S N S= ⋅ + ⋅ ⋅ + N . If equation 4 is used to forecast the 

model length (instead of applying the operator to generate the grammar and then measure the gram-
mar), the complexity can be reduced to ( ) ( )2CreateNTC O N S O= ⋅ ⋅ ≈ N . 

3.2 The “Merge NT” Operator 

3.2.1 Description of the operator 
This operator merges two non-terminal symbols from the grammar into a new non-terminal symbol. 
The MergeNT operator differs from the CreateNT operator in two significant respects: 

• This operator does not insert a new rule into the grammar, but modifies the heads of all corre-
sponding rules to reflect the changes. 

• There is no precondition on the relative position of the candidate symbols for merging in the 
grammar, i.e. the candidate symbols for merging should not necessarily form a bigram. 

Merging two symbols “X” and “Y” into a common non-terminal symbol “Z”, causes the substitution 
of all occurrences of both “X” and “Y” by “Z” and the substitution of the corresponding rule heads. 
Table 7 shows the effect of this operator. 
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Operator “Merge NT”: Merging symbols AP1 and AP2 
NP → ART AP1 
NP → ART AP2 
AP1 → ADJ NOUN 
AP2 → ADJ AP1 

⇒
NP → ART AP3 
AP3 → ADJ NOUN 
AP3 → ADJ AP3 

Table 7: The effect of the MergeNT operator, as presented in [15]. 

In natural language grammars, symbols created by this operator may correspond to specific word 
classes (e.g. nouns or verbs) and phrasal classes (e.g. noun phrases). The effect of this operator is not a 
simple representation change. The merging of two different symbols always increases the coverage of 
the grammar, as the set of sentences recognised by the grammar increases. Additionally, the use of this 
operator can cause rewrite rules to become identical, allowing the elimination of duplicate rules from 
the grammar, as shown in table 7. Another important effect of this operator is the introduction of (di-
rect or indirect) recursion in the grammar, as can also be seen in table 7. 

In order to study the effect of this operator to the model description length of a grammar, it is again 
useful to decompose the model description length into its two components: the grammar description 
length (GDL) and the derivations description length (DDL). In general, the effect of the MergeNT op-
erator in a grammar can be summarized as follows: 

• All occurrences of “X” and “Y” are substituted by the non-terminal symbol “Z”. 
• Rules can be eliminated, since merging two symbols can lead to duplicate rules. 
• The coverage of the grammar always increases. 
• The GDL of the grammar always decreases. This reduction has two causes: 
a) As two non-terminal symbols are merged into a single one, the number of bits required to 

encode non-terminals decreases. 
b) As this operator may eliminate rules, the total number of symbols in the grammar may de-

crease. 
• The DDL of the grammar can either increase or decrease due to the following causes: 
a) The number of rewrite rules defining the new symbol “Z” is larger than that for either of 

the two merged symbols (“X”, “Y”). As a result, more bits are required to encode each oc-
currence of the new symbol compared to the two substituted ones. 

b) The insertion of the new symbol “Z” can result in some rules becoming identical and thus 
being eliminated from the grammar. Identical rules are either the result of rule heads be-
coming identical, i.e. becoming the new symbol “Z”, or rule bodies becoming identical by 
the replacement of both “X” and “Y” by “Z”. An example of the latter situation is the case 
of the two “NP” rules in table 7. The elimination of duplicate rules can reduce the number 
of rules sharing the same head symbol (either the symbol “Z” or any other non-terminal 
symbol) and the number of bits required to encode instances of this symbol. 

3.2.2 The complexity of the “Merge NT” operator mode 
In this subsection we estimate the complexity of the MergeNT operator and the complexity of a 
“merge” step. This step is defined as the process of applying the MergeNT operator over all possible 
combinations of all non-terminal symbols in the grammar and calculating the model length of all re-
sulting grammars. The process of performing a “merge” step can be realised with the simple algo-
rithm in Figure 5. 
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 for each Rule in Grammar { 
  for each Symbol in Rule { 
   Store(Symbol) 
  } 
 } 
 for each Symbol_1 { 
  for each Symbol_2 after Symbol_1 { 
  for each Rule in Grammar { 
  for each Symbol in Rule { 
   if Symbol equals to either Symbol_1 or Symbol_2 { 
   Replace Symbol with Symbol_1 
  } 
  } 
  } 

  Measure Grammar Model Length ( )( )1O N S⋅ +  

  } 
 } 

Figure 5: Pseudo-code of a single step of the “merge” mode. 

As a first step, all non-terminal symbols in the grammar must be identified, which requires an iteration 
over all symbols in all rule bodies. The complexity of this action is ( )O N S⋅ , assuming that the proc-
ess of storing the symbols is of constant complexity. The number of the unique non-terminal symbols 
can be at most  (the maximum number of rules in the grammar). N

As a second step, a quadratic search is performed so as to apply the MergeNT operator over all 
combinations of all the non-terminal symbols, the number of which 2 2N . The process of applying 
the operator involves an iteration over all symbols in all rule bodies with a complexity of ( )O N S⋅ , 
assuming that the process of replacing symbols in rule bodies is of constant complexity. The complex-
ity of examining all symbol combinations is ( )( )( )2 2 1O N N S N S⋅ ⋅ + ⋅ + . As a result, the com-

plexity of the whole step (CMergeNT) is cubic: 
 

( ) ( )
3

32 1
2MergeNT

N S
C O N S O

⎛ ⎞⋅ ⋅ +
= + ⋅ ≈⎜ ⎟

⎝ ⎠
N

)

)UT

  

3.2.3 The effect of “Merge NT” on Grammar Description Length 
Assuming a context-free grammar G, which has the following characteristics: 

• ANT: number of occurrences of non-terminal symbols, including the start symbol of the gram-
mar, but excluding the special “STOP” symbol. 

• AUNT: number of unique non-terminal symbols, excluding the start symbol and the special 
“STOP” symbol. 

• AUT: number of unique terminal symbols. 
• AT: number of occurrences of terminal symbols. 
• AS: number of rules in the start symbol subset. 
• AR: number of rules in the start symbol subset and the non-terminal subset. AR implicitly 

measures the number of “STOP” symbols required to encode the rules of the grammar.  
• : number of bits required to encode each occurrence of a non-terminal 

symbol. 
( 1log += UNTNT ABits

• (logTBits A= : number of bits required to encode each occurrence of a terminal symbol. 

• : number of bits required to encode each occurrence of a non-terminal symbol in the 
resulting grammar, i.e. after the operator has been applied to G. 

Fin
NTBits
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As was the case with the CreateNT operator, the initial GDL of G (before the operator is applied) can 
be calculated as follows: 
 

( ) ( ) ( )2 log 1 logIn NT R S UNT T UTGDL A A A A A A= + − + ⋅ + + ⋅   
 
Similarly, the GDL after the operator has been applied can be calculated as: 
 

( ) ( ) ( )2 log logFin NT R S UNT T UTGDL A A A A A A= + − + ⋅ + ⋅ − Ε

)

  
 
The first term of the above equation represents the bits required to encode all non-terminals. Since the 
application of the operator has substituted every occurrence of either “X” or “Y” with “Z”, the total 
number of unique non-terminal symbols has decreased by one. As a result, . The 
term  represents the expected reduction in GDL that can occur if the application of this operator 
leads to duplicate rules, which should be removed. For each rule that is eliminated from the grammar 
G, we have to remove the bits required to encode its head, its body and the “STOP” symbol: 

( UNT
Fin
NT ABits log=

Ε

 
( ) ( ) ( ) ( )( )

( ) ( )
1

3

21 log log log

2 log

j UNT UNT U
j

j UNT
j

L A A A

L A
∈Ω

∈Ω

Ε = + ⋅ + Ω ⋅ + +

+ ⋅

∑

∑

T

)

 (6a) 

 
where: 

• Ω1: the set of the rules from the start symbol subset that are eliminated from G. 
• Ω2: the set of the rules from the terminal subset that are eliminated from G. |Ω2| is the number 

of rules in Ω2. 
• Ω3: the set of the rules from the non-terminal subset that are eliminated from G. 
• Lj: the number of non-terminal symbols in the body of rule j. 

In equation 3.3, the term ( ) (1 logj UNTL A+ ⋅  represents the bits required to encode the non-terminal 

symbols in the rule body (plus the “STOP” symbol) of a rule from the start symbol subset. The term 
( ) (log logUNT UT )A A+  represents the bits required to encode the head and the terminal symbol in the 

body of a rule from the terminal subset. The last term ( ) ( )2 logj UNTL A+ ⋅  represents the bits re-

quired to encode the head and the non-terminal symbols of the body (plus the “STOP” symbol) of a 
rule from the non-terminal subset. 

The change ∆GDL of the GDL due to this operator is: 
 

( )

( ) ( ) ( ) ( )( )

( ) ( )
1

3

2

2 log
1

1 log log log

2 log

UNT
GDL NT R S

UNT

j UNT UNT UT
j

j UNT
j

A
∆ A A A

A

L A A A

L A
∈Ω

∈Ω

⎛ ⎞
= + − + ⋅ −⎜ ⎟+⎝ ⎠
⎛ ⎞+ ⋅ + Ω ⋅ + +
⎜ ⎟
⎜ ⎟

+ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

 (6b) 

 
The first term in equation 3.4 is negative and can be considered “constant”, as it depends on the char-
acteristics of the initial grammar, independently of the specific two symbols that are merged. The sec-
ond term in equation 3.4 is also always negative (due to the minus sign). As a result, the reduction in 
GDL is larger as the number of the duplicate rules eliminated from the grammar and their length in-
crease. 
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3.2.4 The effect of “Merge NT” on Derivations Description Length 
Given a grammar G and a set of sentences recognised by G, the calculation of the DDL can be calcu-
lated as follows: 

 

( ) ( )

( )

log log

log

S
Start Symbol X j

rule in X in
Start Symbol Subset rulebody

S
X j

rule in X in
Non-Terminal Subset rulebody

DDL H H F

H F

∀ ∀

∀ ∀

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

⋅ +

 (6c) 

where: 
• X represents each non-terminal symbol in the head and body of a rule j. 

•  
1X

Number of times X appears as Head of a rule
H

if X does not appear as Head of a rule
⎧

= ⎨
⎩

• represents the number of sentences involving rule j in their generation/parsing. S
jF

As we are mainly interested in studying the effect that this operator has on grammar G, we calculate 
directly the change ∆DDL in DDL due to this operator. In order to calculate this change, we divide the 
effect of this operator into two “phenomena”, which will be studied independently of each other. The 
first “phenomenon” is the substitution of all “X” or “Y” rule heads by “Z”, without eliminating any 
duplicate rules that may appear. We will refer to this event as “merge of sets of rules”. The second 
“phenomenon” is the elimination of duplicate rules. As explained, the application of the MergeNT op-
erator can lead to duplicate rules in two ways. Rules sharing the same bodies but their heads being ei-
ther “X” or “Y” will become identical when their heads are substituted by the new symbol “Z”. Typi-
cal examples are terminal rules, where one terminal may belong to two categories. One of the two 
rules must be eliminated if the non-terminal symbols representing the two categories are merged. The 
second situation where duplicate rules occur is the substitution of “X”, “Y” by “Z” in rule bodies. It is 
possible for these two mechanisms to occur simultaneously on a single rule. In the following para-
graphs we examine the effect of each of the two phenomena on ∆DDL. 

Merging sets of rules 
As discussed above, the MergeNT operator does not insert a new rule into the grammar. Instead, the 
operator modifies the heads of some rules to reflect the required changes. This is shown in Table 8. 
 

Operator “Merge NT”: Merging symbols X and Y 
Initial Grammar (GIn) Final Grammar (GFin) 

 X → A1 B1 C1
 X → A2 B2 C2
 X → A3 B3 C3
 Y → D1 E1 F1
 Y → D2 E2 F2
 K → L1 M1 N1

… 

⇒

 Z → A1 B1 C1
 Z → A2 B2 C2
 Z → A3 B3 C3
 Z → D1 E1 F1
 Z → D2 E2 F2
 K → L1 M1 N1

… 

Table 8: Merging sets of rewrite rules. 

In the initial grammar GIn of table 8, ( )3log  bits are required in order to unambiguously identify each 
rule having as head the symbol “X”, while ( )2log  bits are required for identifying a rule having as 
head the symbol “Y”. In the resulting grammar GFin, identifying a rule that has symbol “Z” as head re-
quires  bits. In the general case, the bits required to identify each rule having the new symbol 
“Z” as head is: 

( )5log
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( )logZ X YBits F F= +   

 
where: 

• FX represents the number of rules that have symbol “X” as head and 
• FY represents the number of rules that have symbol “Y” as head. 

 
In order to calculate the contribution of the symbols X and Y to the DDL of the initial grammar GIn we 
need to count the number of times each symbol appears in rule bodies. As a result, the total contribu-
tion of both “X” and “Y” to the DDL is: 
 

( ) ( )log logIn X YC Fα β= ⋅ + ⋅ F   
 
where: 

• ,  
In

X S
j j

j G
N Fα

∈

= ⋅∑
In

Y S
j j

j G
N Fβ

∈

= ⋅∑
•  represents the number of sentences involving rule j in their generation/parsing. S

jF
• j represents a single rule of the grammar GIn. 
•  represents the number of occurrences of the symbol X in the body of rule j. X

jN

•  represents the number of occurrences of the symbol Y in the body of rule j. Y
jN

On the other hand, the contribution of the new symbol Z to the DDL of GFin can be calculated as: 
 

( ) ( )YXFin FFC +⋅+= logβα   
 
Thus, the change ∆C of the DDL due to the merging of the two rule sets is: 
 

log 1 log 1Y X

X Y

F F∆C
F F

α β
⎛ ⎞ ⎛ ⎞

= ⋅ + + ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (6d) 

Removing duplicate rules 
The elimination of rules that have become identical is a side effect of applying the MergeNT operator 
and largely depends on the characteristics of the grammar under examination. In cases where such 
elimination does occur, the total contribution to the DDL is: 
 

,Fin

S
k j

j G k Θ j

∆C M
∈ ∈

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑ ∑ F  (6e) 

 
where: 

• Θ is the set of head symbols of rules that were removed. 
• k represents each symbol in the body of a rule j that is also a member of the set Θ. Note that 

since k is a member of Θ it cannot be the new symbol Z. 
• Mk represents the reduction of the number of bits required to encode a single occurrence of the 

symbol k. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

In

Fin
k GinheadaskhavingrulesofNumber

GinheadaskhavingrulesofNumberM log . Note that  is al-

ways negative. 

kM

• represents the number of sentences involving rule j in their generation. S
jF
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3.2.5 Total contribution of “Merge NT” to the Model Description Length 
The total contribution of the MergeNT operator to the model description length of a grammar can be 
calculated by combining equations 6b, 6d and 6e: 
 

( )

( ) ( ) ( ) ( )( )

( ) ( )
1

3

2

,

2 log
1

1 log log log

2 log

log 1 log 1
In In

Fin

UNT
NT R S

UNT

j UNT UNT UT
j

j UNT
j

X S Y SY X
j j j j

j G j GX Y

S
k j

j G k Θ j

A∆ML A A A
A

L A A A

L A

F FN F N F
F F

M F

∈Ω

∈Ω

∈ ∈

∈ ∈

⎛ ⎞
= + − + ⋅ −⎜ ⎟+⎝ ⎠
⎛ ⎞+ ⋅ + Ω ⋅ + +
⎜ ⎟

+⎜ ⎟
+ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⋅ ⋅ + + ⋅ ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
⋅⎜ ⎟

⎝ ⎠

∑

∑

∑ ∑

∑ ∑

+

 (6) 

 
The first two terms of equation 6 correspond to the change in GDL. As explained in section 3.2.3, 

the reduction in GDL is larger as the number of the duplicate rules eliminated from the grammar and 
their length increase. The third and fourth terms of equation 6 correspond to the change in DDL. The 
third term represents the merging of sets of rules and is always positive. The independent parameters 

are four, the relative frequency of the two symbols “X” and “Y” as head of rules X

Y

F
Fα⎛ ⎞=⎜ ⎟

⎝ ⎠
, the 

number of times “X” and “Y” appear in rule bodies ( ),X Y
j jN N  and the rule frequencies S

jF . The two 

logarithms of the third term in equation 6 reach a minimum when α=1 (FX=FY). Thus, this term is 
small when α equals one and “X” and “Y” do not appear frequently in rule bodies that are associated 
with high frequencies. Finally, the fourth term represents the elimination of duplicate rules and is al-
ways negative or zero, depending on the existence of duplicate rules or not. 

3.2.6 Accelerating the MergeNT operator 
The MergeNT operator can produce better scoring successor grammars than the parent only if ∆ML <  
0. The first term of equation 6 is constant (for a given parent grammar ) and always negative. The 
second and fourth terms are also always negative or zero, depending on whether duplicate rules exist 
in the new grammar. Finally, the third term is always positive. Thus, in order to satisfy ∆ML  0, the 
sum of the first, the second, and the fourth terms must be greater, in absolute terms, than the third 
term. 

G

<

Intuition in this case suggests the application of the MergeNT to non-terminals that frequently ap-
pear in similar contexts. In fact such a heuristic was used in SNPR [34] for reducing the number of 
grammars that have to be searched. “Similar context" can be thought of as rules with small differences 
other than the two symbols that will be merged, highly probable to become duplicate and thus elimi-
nated from the grammar when the two symbols are actually merged. As a result, this “common sense” 
property of the MergeNT operator can be associated with duplicate rule elimination in our framework. 
However, from equation 6 we can easily conclude that although rule elimination is an important fac-
tor, it is not the only one. An important condition for the successful application of this operator is a 
trade-off between the number, frequency and length of the eliminated duplicate rules and the distribu-
tion of the two merged symbols in the grammar (third term of equation 6). Thus, the existence in simi-
lar contexts cannot be used as a criterion for directing the search, as it is based primarily on rule elimi-
nation, but fails to capture an equally significant factor: the relative frequencies of the two symbols as 
rule heads and their distribution in the grammar. Instead of this “incorrect” heuristic, e-GRIDS uses 
equation 6 to direct the search by calculating the model description length without actually generating 
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the corresponding grammars. The calculation of equation 6 is considerably faster than producing and 
scoring the corresponding grammar. 

In section 3.2.2 the complexity of an MergeNT mode step was found to be 
( )( 31 2 2 1MergeNTC O N S N= ⋅ ⋅ ⋅ + + ⋅ )S . Forecasting the model length instead of generating and 

measuring the child grammar presents a complexity of ( )21 2MergeNTC O N M N S= ⋅ ⋅ + ⋅ , where M 

is a count of the rules that will be eliminated from the grammar ( )1 2 3M = Ω + Ω + Ω  which is 

usually a small number. However, a mode that forecasts the model length is still a quadratic process, 
which may be a problem if the number of training instances is large. In such cases additional heuristics 
must be applied that possible combine the idea of “similar context” with the overall presence of the 
various symbols in the grammar. 

3.3 “Create Optional NT” Operator 
e-GRIDS introduces a new operator, the “Create Optional NT”, and the relevant mode in the search 
process. The introduction of this new operator was necessary as the existing operators were unable to 
infer correctly some types of grammars, often converging to slightly less general grammars than the 
correct one. This inefficiency has been mainly attributed to the fact that the older two operators could 
not create rules that contain an optional symbol, i.e. a symbol that either exists or not but only a single 
occurrence can be expanded by the rule if the symbol exists. Such “optional” symbols could exist in 
learned grammars only as oddments in rewrite rules starting with the start symbol or through recur-
sion. Leaving these symbols in start symbol rules prevents them from merging (and thus leading to 
more compact grammars) and the introduction of recursion to describe these symbols leads to more 
general grammars which often get rejected. The introduction of the CreateOptionalNT operator tries to 
alleviate this inefficiency by inserting rules in the grammar that constitute symbols optional, rules that 
couldn’t have been possible to have been inserted by the rest of the operators. 

3.3.1 Description of the operator 
e-GRIDS introduces a new operator, the “Create Optional NT”, and the relevant mode in the search 
process. The introduction of this new operator was necessary as the existing operators were unable to 
infer correctly some types of grammars, often converging to less general grammars than the correct 
one. This inefficiency has been mainly attributed to the fact that the older two operators could not cre-
ate rules that contain an optional symbol, i.e. small variations of existing rules. 

Create Optional NT – CreateOptionalNT seeks to expand a rule created by the CreateNT operator 
by attaching an additional non-terminal symbol from the existing ones. This expansion does not affect 
the original rule, as the CreateOptionalNT operator appends a new rule that is a duplicate of the origi-
nal rule, with a non-terminal symbol appended at the end of the rule body, as shown in Table 9. 

 
Operator “Create Optional NT”: Making optional symbol ADJ 

NP → AP1 NOUN 
NP → AP1 ADJ NOUN 
NP → AP1 ADJ ADJ NOUN 
AP1 → ART ADJ 
X → A1 AP1 
Y → X ADJ NOUN 

⇒

NP → AP1 NOUN 
NP → AP1 ADJ NOUN 
AP1 → ART ADJ 
AP1 → ART ADJ ADJ 
X → A1 AP1 
Y → X NOUN 

Table 9: The effect of the CreateOptionalNT operator. 

The effect of this operator in the grammar is that the appended symbol becomes optional with respect 
to the original rule, as created by the CreateNT operator. The fact that the CreateOptionalNT operator 
does not alter the original rule and appends a new rule with the same rule head is a generalisation step.  

In theory, the effect of the CreateOptionalNT operator could be achieved by the CreateNT and 
MergeNT operators, as shown in Table 10. 
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Operator “Create NT”: Creating symbol AP2 

AP1 → ART ADJ ⇒ AP1 → ART ADJ 
AP2 → ART ADJ ADJ 

Operator “Merge NT”: Merging symbols AP1 & AP2 
AP1 → ART ADJ 
AP2 → ART ADJ ADJ ⇒ AP1 → ART ADJ 

AP1 → ART ADJ ADJ 

Table 10: Analysing the effect of the CreateOptionalNT operator. 

However, in practice this is not possible for the following reasons: 

• CreateNT cannot create a rule with three symbols in the rule body, as it operates solely on bi-
grams. 

• The creation of “AP1” by CreateNT, the only operator that creates new rules, will eliminate 
all occurrences of the bigram “ART ADJ” from the grammar. As a result, a rule of the form 
“AP2  ART ADJ ADJ” cannot exist, so that MergeNT can lead to the grammar of Table 11. →

The effect of this operator is not a simple representation change, as the addition of a new rule that 
shares the same rule head with an existing rule always increases the coverage of the grammar. Addi-
tionally, the use of this operator can cause rewrite rules to become identical, allowing the elimination 
of duplicate rules from the grammar. 

 
S → … X Y … S → … X … 
S → … Z Y … S → … Z … 
S → … W Y … S → … W … 
W → … X W → … X 
Z → … W Z → … W 
X → X1 X2 X → X1 X2 
 

⇒  

X → X1 X2 Y 

Table 11: Replacing all occurrences of WXY, where WX can be expanded to end with the symbol X. 

In general, the effect of the CreateOptionalNT operator in a grammar can be summarized as fol-
lows (assuming that the rule “X  X1 X2” is to be augmented with the non-terminal symbol “Y ”): →

• All occurrences of the sequence “X Y” are substituted by the non-terminal symbol “X”. 
• All occurrences of the sequence  are substituted by XW Y X , if the body of the rule of which 

 is the head ends with XW X , or the rule’s last body symbol can be expanded to end with X . 
(An example can be seen in Table 11.) 

• A new rule of the form “X  X1 X2 Y” is added to the grammar. →
• Rules may be eliminated from the grammar, since bigram substitutions can lead to duplicate 

rules. 
• The coverage of the grammar always increases. 
• The GDL of the grammar is modified, as: 

a) A new rule of the form “X  X1 X2 Y” is appended. →
b) The elimination of the symbol “Y” from some rule bodies can cause rules to be merged, 

thus reducing the total number of symbol occurrences in the grammar. 

• The DDL of the grammar is also modified due to the following causes: 

a) The number of rewrite rules defining the symbol “X” is increased by one. As a result, more 
bits are required to encode each occurrence of the symbol “X” than before, thus increasing 
the DDL. 

b) Rule elimination can potentially decrease the number of times that some non-terminals (in-
cluding “X”) appear as rule heads, reducing the number of bits required to encode each oc-
currence of these symbols and thus reducing the DDL. 
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3.3.2 The complexity of the “Create Optional NT” operator mode 
In this paragraph we estimate the complexity of the CreateOptionalNT operator and the complexity of 
a “create optional” step. This step is defined as the process of applying the CreateOptionalNT operator 
over all possible bigrams whose first symbol is a non-terminal symbol created by the CreateNT opera-
tor and calculating the model length of all successor grammars. The process of performing a single 
“create optional” step can be realised with the algorithm in Figure 6. 

 
 for each Rule in Grammar { 
  for i=0, i< Rule body symbol number, i=i+1 { 
   if symbol[i] created by the CreateNT operator { 
    Store_Bigram (symbol[i], symbol[i+1]) 
   } 
  } 
 } 
 for each stored Bigram { 
  SH = Bigram(0) 
  Y = Bigram(1) 
  do { 
   for each Rule in Grammar { 
    if last symbol in rule body is in SH { 
     Append rule head to SH
    } 
   } 
  } while SH modified 
  for each symbol X in SH { 
   for each Rule in Grammar { 
    for each Symbol in Rule { 
     Replace bigram (X,Y) with X 
    } 
   } 
  } 

  Measure Grammar Model Length ( )( )1O N S⋅ +  

 } 

Figure 6: Pseudo-code of a single step of the application of the CreateOptionalNT operator. 

As a first step, all possible bigrams whose first symbol has been created by the CreateNT operator 
must be identified, which requires an iteration over all symbols in all rule bodies. The complexity of 
this action is , assuming that the process of storing the symbols is of constant complexity. 

The number of the produced bigrams (represented by K) can be at most 
(O N S⋅ )

K N S= ⋅ . 
As a second step, the CreateOptionalNT operator must be applied over all bigrams. For each bi-

gram we have to identify the set SH,. This is an iterative process which can perform at most N-1 steps 
(if all rule heads except the grammar start symbol have been appended in SH). Since all rules must be 
examined during each iteration, the total complexity of identifying SH equals to . The total 

number of elements in S
( )1N − ⋅N

H can be at most 1L N= − . 
Finally, the third step is to apply the CreateOptionalNT operator and measure the model length of 

the produced grammar. Applying the operator requires an iteration over all symbols in SH: for each 
symbol in SH all rule bodies from all rules in the grammar must be examined in order to eliminate the 
symbol “Y”. This process has a complexity of L N S⋅ ⋅ , assuming that the process of replacing a bi-
gram with a symbol is of constant complexity. Considering all steps, the total complexity of the mode 
for the CreateOptionalNT operator (CCreateOptionalNT) is cubic: 

 
( )( ) ( )( )( )
( )( ) (

2

3 2 2 2 2 3 2

1

1 2

CreateOptionalNTC O N S K N N L S S O N S N S N N S

O N S N N S N S N S O N N

= ⋅ + ⋅ + ⋅ + = ⋅ + ⋅ ⋅ + − ⋅ + =

⋅ + ⋅ − ⋅ + ⋅ + ⋅ ≈ ⋅ + )
S

. 
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3.3.3 The effect of “Create Optional NT” on Grammar Description Length 
As was the case with the MergeNT operator, the initial GDL of G (before the operator is applied) can 
be calculated as: 
 

( ) ( ) ( )2 log 1 logIn NT R S UNT T UTGDL A A A A A A= + − + ⋅ + + ⋅ .  
 
Similarly, the GDL after the operator has been applied can be calculated as: 
 

( ) ( ) ( ) 1 27 log 1 log E EFin NT R S UNT T UTGDL A A A A A A= + − + ⋅ + + ⋅ − −   
 
The term Ε 1 in the above equation represents the expected reduction in GDL that can occur if the ap-
plication of this operator leads to duplicate rules, which should be removed. Recalling the discussion 
of section 3.2.3, we have: 
 

( ) ( ) ( ) ( )
1 3

1 1 log 1 2 log 1j UNT j UNT
j j

L A L A
∈Ω ∈Ω

Ε = + ⋅ + + + ⋅ +∑ ∑   

 
where: 

• Ω1: the set of the rules from the start symbol subset that are eliminated from G. 
• Ω3: the set of the rules from the non-terminal subset that are eliminated from G. 
• Lj: the number of non-terminal symbols in the body of rule j. 

The term Ε 2 represents the expected reduction in GDL that occurs from the removal of the symbol 
“Y”: 
 

( )2 log 1Y UNTN AΕ = ⋅ +   
 
where NY is the number of removals of the symbol “Y” from the grammar. As a result, the change 
∆GDL of the GDL due to this operator is: 
 

( ) ( )

( ) ( ) ( ) ( )
1 3

5 log 1 log 1

1 log 2 log .

GDL UNT Y UNT

j UNT j U
j j

∆ A N A

L A L A
∈Ω ∈Ω

= ⋅ + − ⋅ + −

⎛ ⎞
+ ⋅ + + ⋅⎜ ⎟

⎝ ⎠
∑ ∑ NT

 (7a) 

 
The first term in equation 7a is a small positive constant, while the other two remaining factors are 

always negative (due to the minus signs). Due to the fact that the only positive quantity is only a small 
positive constant, even the elimination of five occurrences of the symbol “Y” suffices to get a reduc-
tion in the GDL of the produced grammar. The reduction in GDL is larger as the number of the dupli-
cate rules eliminated from the grammar and their length increases as well as the number of occur-
rences of the symbol “Y” that are eliminated increases. 

3.3.4 The effect of “Create Optional NT” on Derivations Description Length 
Like the MergeNT operator, the CreateOptionalNT operator modifies DDL in two ways: by merging 
sets of rules and by eliminating rules from the grammar. Regarding the effect on the DDL due to the 
addition of the new rule that shares the same head with an existing rule, it is identical to the merge of 
two rule sets with the second set containing a single rule. Thus, if we set 0β =  and  to equa-
tion 6d, the equation becomes equal to the following quantity: 

1YF =

 
1log 1

X

C
F

α
⎛ ⎞

∆ = ⋅ +⎜ ⎟
⎝ ⎠

 (7b) 
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Finally, regarding the elimination of rules from the grammar due to the fact that they have become 
duplicated, the effect of the CreateOptionalNT operator is identical to the effect of the MergeNT op-
erator, as described by equation 6e (with symbols “X” and “Z” of the MergeNT operator now identi-
fied as the symbols “X” and “Y” of the CreateOptionalNT operator). 

3.3.5 Total contribution of “Create Optional NT” to the Model Description Length 
The total contribution of the CreateOptionalNT operator to the model description length of a grammar 
can be calculated by combining equations 7a, 7b and 6e. 
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(7) 

 
The first three terms of equation 7 correspond to the change in GDL. The fourth and fifth terms of 
equation 7 correspond to the change in DDL: The fourth term represents the merging of sets of rules 
and is always positive. The last term represents the elimination of duplicated rules and is always nega-
tive or zero, depending on the existence of duplicated rules. 
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4 Experimental Evaluation

In this section we evaluate the e-GRIDS algorithm experimentally, focusing on its performance on specific
tasks and its scalability. Additionally, we examine the role of certain parameters of the algorithm, like the
size of the beam. We use both sentences generated from artificial grammars and sentences from a large
textual corpus in our studies. Artificial grammars let us evaluate specific characteristics of e-GRIDS, as
we can control various aspects of a grammar, and they give us the ability to measure the correctness of
the induced grammars. The large textual corpus, on the other hand, lets us examine the scalability of
e-GRIDS to more complex grammatical domains.

4.1 Experiments on Artificial Grammars

Evaluation Metrics for Artificial Grammars

Evaluation in grammatical inference presents some peculiarities and common metrics that are used for
supervised learning tasks, like recall and precision, are not directly applicable. Alternatively, in order to
evaluate an inferred grammar we have to compare it against the “correct” grammar, so as to identify their
similarity. However, even if the “correct” grammar is known, which is not the case in most real-world
situations, the problem of determining whether two context-free grammars are equivalent is not an easy
task: Given two context-free grammars G1 and G2, there exists no algorithm that can determine whether
G1 is more general than G2 (i.e. L (G1) ⊇ L (G2) or if L (G1) ∩L (G2) = ∅, where L (G) the language of
grammar G [20, 13].

As a result, during evaluation we mainly focus on measuring three aspects of the inferred grammar
[15]:

• errors of omission (failures to parse sentences generated by the “correct” grammar), which indicate
that an overly specific grammar has been learned,

• errors of commission (failures of the “correct” grammar to parse sentences generated by the inferred
grammar), which indicate that an overly general grammar has been learned, and

• ability of the inferred grammar to parse correctly sentences longer than the sentences used during
training, which indicates the additional expressiveness of the learned grammar.

In experiments with artificial grammars, where the “correct” grammar is known, to estimate these
figures we use the original (or “correct”) grammar GO and the learned grammar GL to generate a large
number of sentences. Errors of omission can be estimated as the fraction of the number of sentences
generated by GO that are not parsed by GL to the total number of sentences generated by GO. Errors
of commission can be estimated as the fraction of the number of sentences generated by GL that are
not parsed by GO to the total number of sentences generated by GL. Errors of omission and errors of
commission measure the overlap of the two grammars. In the ideal case, both of these figures must be
zero, indicating that all sentences generated by one grammar can be parsed by the other. If this is the case
and a sufficiently large number of sentences has been generated, we can conclude that the two grammars
significantly overlap. In order to estimate the third figure, example sentences must be generated from
GO that have greater length than the ones used for training. This figure can then be estimated as the
fraction of the number of sentences that were successfully parsed by GL to the total number of generated
sentences.

Experimental Setting

The first set of experiments evaluates e-GRIDS on examples generated from simple recursive grammars
and involve a small set of terminal symbols, as we are mainly interested in examining the ability of e-
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GRIDS to infer recursive grammars. The two grammars that were used in our experiments are shown in
Table 11. The first grammar (a) includes declarative sentences with arbitrarily long strings of adjectives
and both transitive and intransitive verbs, but no relative clauses, prepositional phrases, adverbs or
inflections. The second grammar (b) contains declarative sentences with arbitrary embedded relative
clauses but has no adjectives, adverbs, prepositional phrases or inflections. Both grammars are associated
with a small lexicon of terminal symbols.

(a) (b)
S → NP VP S → NP VP
VP → VERBI VP → VERB NP
VP → VERBT NP NP → ART NOUN
NP → the NOUN NP → ART NOUN RC
NP → the AP NOUN RC → REL VP
AP → ADJ VERB → saw
AP → ADJ AP VERB → heard
VERBI → ate NOUN → cat
VERBI → slept NOUN → dog
VERBT → saw NOUN → mouse
VERBT → heard ART → a
NOUN → cat ART → the
NOUN → dog REL → that
ADJ → big
ADJ → old

Table 11: Two artificial grammars: grammar (a) includes arbitrary strings of adjectives, and grammar
(b) supports arbitrary relative clauses [15].

Although these grammars are simplistic compared to natural language grammars, they both involve
recursion and thus describe an infinite language. The first grammar uses a simple type of recursion, where
adjectives are repeated before a noun. Once all adjectives are grouped into a single non-terminal by e-
GRIDS, sequences of symbols belonging to this category usually provide enough information to detect
recursion. On the other hand, the second grammar involves recursion over a relative clause: the relative
clause must be first correctly identified before enough evidence to detect recursion appears. The main
point of interest in both of these grammars is to examine the ability of e-GRIDS to generalise correctly,
by inferring grammars that involve recursion.

In the experiments that we have conducted, we have generated a large number of sentences top-
down from grammars (a) and (b). For each grammar, a large number of example sentences (more than
10000) was generated, using a uniform distribution to select rules randomly1 when expanding ambiguous
non-terminals. The generated example sentences were randomly shuffled. For each grammar we defined
an arbitrary maximum length Lmax for the training examples and the test examples. The resulting
set was used for evaluation according to the two first figures, i.e. errors of omission and commission.
As we wanted to study whether e-GRIDS can produce recursive grammars, we wanted also to evaluate
the learned grammars on example sentences that were longer than the longest ones used for training.
Therefore, a second test set was created, containing example sentences with lengths greater than Lmax

but lower than a second arbitrary maximum length. This second set is the set that was used in order to
calculate the third figure, i.e. the ability to parse sentences longer than the ones used for training. All
sets were populated by randomly selecting example sentences from the generated sentences. Special care

1All random selections in our experiments were based on a uniform distribution.
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was taken in order to ensure that the same sentence did not appear both in the training and the test sets.
As we are also interested in the learning rate, we have varied the size of the training and test sets

presented to e-GRIDS. In order to gain an unbiased estimate of the performance of e-GRIDS on unseen
data, each experiment was repeated ten times. For every training set size, ten equally-sized training sets
of the desired size and a test set of the same size plus 1000 sentences were created. Half of the example
sentences in the test set were longer than Lmax. Each one of the ten training sets was used to train the
learning algorithm and the performance of the inferred grammar was evaluated on the common test set.
The average over the ten runs is reported here as the final evaluation measure along with the standard
deviation. Note that an example sentence is considered successfully parsed once at least one parse have
been found given a grammar. No attention has been paid to the quality of the parse trees.

Experiment 1: Evaluation on small grammars

As a first experiment, we have evaluated the ability of e-GRIDS to infer recursive grammars by using the
two grammars presented in Table 11. Regarding grammar (a) from Table 11, a set of 22826 sentences
was generated. This set was split into two subsets. The first subset (A) contained sentences with length
up to 15 words (21183 sentences), while the second subset (B) contained sentences with length between
16 and 20 words (1643 sentences). Beam search was used with a beam size of 3. The experiment was
conducted over various training set sizes, from 10 to 700 sentences. For each training set size, ten training
sets were created. Each training set contained a fixed number of unique sentences that were randomly
chosen from subset (A). The ten different sets contained unique sentences, as no sentence from any one
training set was shared with any of the other nine training sets. From these training sets, ten grammars
were inferred and were evaluated on the common test set, originating from subset (B) and containing
roughly 1000 sentences more than each training set. In figures2 3, 4 and 5, the averages are presented
together with the error bars, measuring the standard deviation.

Figure 3 presents the probability of the learned
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Figure 3: Probability of parsing a valid sentence
of length up to 15 words. (1-errors of omission)

grammar to parse a valid sentence that has length
up to the maximum length of the examples used for
training. Figure 4 presents the probability of pars-
ing a valid sentence that has length greater than any
of the examples seen by e-GRIDS during training.
Finally, Figure 5 presents the probability of gener-
ating a valid sentence. From the two first curves
we can conclude that e-GRIDS reaches an accept-
able performance (i.e. ≥ 0.9) without requiring more
than 350 examples. After 350 examples, the inferred
grammars are general enough in order to recognise a
large proportion of the unseen sentences, even if the
sentences are longer than the sentences observed by
e-GRIDS during training. Both curves of Figure 3
and Figure 4 represent the ability of e-GRIDS to
generalise, while the curve of Figure 4 additionally
provides an indication of the ability of e-GRIDS to learn recursion. The similarity of the two curves
shows that e-GRIDS succeeded in finding the recursion over adjectives implied by the training sets.

Another interesting observation is the relatively large error bars, which are due to the “quantized”
behaviour of the algorithm. The inferred grammars either generalised enough to recognise the test set
(including also recursive rules) or were overly specific and did not generalise at all to unseen sentences.
For example for training set size of 250, e-GRIDS inferred nine grammars that were able to recognise all
the sentences in the test set and one grammar that failed completely on the same test set.

2Results for all experiments are expressed in (1-errors of omission) and (1-errors of comission), which were defined in
section 4.1
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Figure 4: Probability of parsing a valid sentence
of length between 16 and 20 words. (1-errors of
omission)
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Figure 5: Probability of generating a valid sen-
tence. (1-errors of commission)

The curve in Figure 5 clearly shows that e-GRIDS overgeneralises when trained with small training
sets. Even at the size of 700, the inferred grammars have a probability 0.15 of generating ungrammatical
sentences. The main reason behind this inefficiency is in the way e-GRIDS selects to categorise terminals.
For example, consider the case in which e-GRIDS decides to classify a noun and an adjective under the
same non-terminal symbol. This wrong categorisation may never create problems in recognising unseen
sentences but it will lead to the generation of many ungrammatical sentences. The number of available
examples is not sufficient for ten-fold validation experiments with training set sizes greater than 700
under the same experimental setting. However, single train – test experiments show that the probability
of generating a legal sentence reaches 1.0 and stabilises for training set sizes greater than 700.

Regarding the second grammar (grammar (b) from Table 11), the experimental setting is exactly the
same as the one for grammar (a). From this grammar, a set of 11500 sentences was generated. This
set was again split into two subsets. The first subset contained sentences with length up to 15 words
(8387 sentences), while the second subset contained sentences with length between 16 and 20 words
(3113 sentences). The beam size was again 3. The experiment was conducted over various training set
sizes (from 10 to 50 training examples) and the results showed that even for a small number of training
examples (20 and above) e-GRIDS does no mistakes. In other words, all three evaluation measures used
here take the value 1.0.

Experiment 2: Varying the Beam Size

In a second experiment, we investigated the role of the beam size in the search process. The beam in
e-GRIDS is used in order to store at any point of the learning process the B most prominent grammars.
These are the grammars that will be further generalised by the three operators. In general, one expects
that the performance will increase as the size of the beam increases and indeed this is what we observed.
We have conducted two different tests, both of them based on the grammar (a), as grammar (b) seems
to be easily learnable even for B = 3. In the first test the size of the beam was set to B = 1, i.e. no
beam was used, while in the second test the beam size was set to B = 10. The results of the experiment
with B = 1 were very close to the results obtained with B = 3, and are therefore not repeated here.

The results of the second test (B = 10) are shown in figures 6, 7 and 8. Comparing these graphs to
those in figures 3, 4 and 5, we can conclude that the performance of e-GRIDS has improved. Performance
according to all three measures reaches 1.0 with training sets of 600 sentences. Of course, the increased
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beam size has a penalty on the required learning time: e-GRIDS requires more than 10 minutes to
converge to a final grammar3 when trained with a training set of size 700, while less than 2 minutes are
required when the beam size is 3.
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Figure 6: Probability of parsing a valid sentence
of length up to 15 words. (B = 10)
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Figure 7: Probability of parsing a valid sentence
of length between 16 and 20 words. (B = 10)
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Figure 8: Probability of generating a valid sen-
tence. (B = 10)

Experiment 3: The balanced parenthesis language

Both grammars (a) and (b) in Table 11 can be converted to equivalent regular grammars. However, since
e-GRIDS is able to infer context free grammars, it would be interesting to study its learning behaviour
on a context free language. As an evaluation language we have chosen the Dyck language with k = 1:

S → S S|[ S ]| ∈ (8)

As the Dyck language with k = 1 cannot be used to generate a large number of example sentences
if we restrict the maximum sentence length, we have performed a ten-fold cross validation. Similar to
the procedure that we have followed in the previous experiments, subset (A) is split into ten subsets of

3On a PC with an AMD Athlon/1400 MHz processor running RedHat Linux.
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Figure 9: Probability of parsing a valid sentence
of length up to 20 words. (1-errors of omission)
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Figure 10: Probability of parsing a valid sentence
of length between 21 and 25 words. (1-errors of
omission)

equal size and one test set is created from subset (B). The experiment is repeated 10 times: each time 9
subsets of (A) are used for training e-GRIDS and the learned grammar is evaluated on the 10th unused
set, augmented with the test set created from subset (B). Figures 9 and 10 show the results for this
experiment. The figure for (1-errors of commission) is not presented as the performance of the algorithm
according to this measure was 1.0 even for very small training set sizes, i.e. the learned grammar did not
generate ungrammatical sentences.

Regarding the figures for parsing valid sentences either of length up to 20 tokens4 (Figure 9) or of
length from 21 to 25 (Figure 10), e-GRIDS approaches 0.95 with a training set size of 900 example
sentences and remains around 0.90 for grater example set sizes. The reason behind this behaviour is that
e-GRIDS converges to grammars that are less general than the target Dyck grammar in some of the 10
folds. Another interesting point is that unlike the previous experiments, e-GRIDS doesn’t converge to the
target Dyck grammar as shown in equation 8, even when reaching performance of 1.0 in all three figures.
The learned grammars were more complex in the sense that a greater number of rules and non-terminal
symbols were involved than in the correct grammar. Nevertheless, the learned grammars encoded the
two main phenomena, the recursion and centre embedding of the Dyck language.

4.2 Experiments with a Large Textual Corpus

Although experiments with artificially generated sentences allowed the study of various features of e-
GRIDS, experiments with sentences from linguistic corpora are required in order to examine e-GRIDS’
robustness to real-world problems, as well as its scalability to more complex grammatical domains.
However there are many difficulties associated with experimental evaluation on real corpora. Usually the
“perfect” grammar is not available and as a result it is not possible to compare the learned grammars with
it. Furthermore, since the perfect grammar is not known, no additional sentences can be generated in
order to evaluate its overlap with a learned grammar. Thus, the required sentences need to be substituted
by additional unseen sentences from the corpus, if the corpus is large enough. However, this does not
solve the problem of measuring the overlap, as we cannot expect sentences generated from the learned
grammars to exist in the corpus. The fact that generated sentences from learned grammars are not in
the corpus does not necessarily mean that they are ungrammatical.

4A token is either a single left parenthesis “(” or a right one “)”.
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Another difficulty associated with these experiments is the fact that the set of words used in the
sentences is not closed. Consider for example the case where a grammar is inferred from a small number
of sentences, consisting of a limited set of words. The inferred grammar will never be able to parse
sentences that contain words outside this limited set, as the words will not be represented by terminal
symbols in the grammar. This shortcoming is hard to overcome. An experimental compromise is to
specifically construct the training and test sets so that they contain the same words in their sentences.
An easier solution is to insert an abstraction layer above the individual words that map words to a fixed
set of symbols. For example, such an abstraction is to use the part of speech (POS) instead of the actual
words.

The insertion of an abstraction layer may solve the problem of the open word set but it also leads
to a new one: the abstraction layer is itself a generalisation over the original sentences. Consider for
example the case where a single sentence is converted into a grammar. If each word is substituted by a
POS category, the resulting grammar from this sentence will be able to recognise not only the sentence
from which it originated but also any other sentence that contains the same POS sequence. The level of
generalisation depends on the morphological details represented by the word categories. For example, a
classification based only on the POS category of the words corresponds to a significant generalisation step.
On the other hand, if the classification is augmented with additional information like gender, number
and person, the level of generalisation is lower, as the number of categories is larger, with each category
corresponding to a smaller number of words. A high degree of generalisation can have a negative impact
on the probability of generating valid sentences using the inferred grammars. Even the training sentences
themselves, when viewed as an initial grammar, may generate ungrammatical sentences. Things can get
worse if words are misclassified into the abstraction categories by an automated system, e.g. a POS
tagger. If POS categories are used as an abstraction layer, misclassifications are not rare as identical
words can belong in different POS categories that can be difficult to disambiguate. As e-GRIDS only
generalises an initial grammar extracted from the training sentences, it cannot eliminate these errors,
converging to a final grammar that may generate many ungrammatical sentences.

Despite the problems associated with the use of an abstraction layer, we have chosen to use this
paradigm for applying e-GRIDS to sentences from linguistic corpora. The reason we have not followed the
paradigm of creating training and test sets that share the same words is mainly due to its unpredictable
nature. Furthermore, the use of a very large number of terminal symbols would lead to an equally
large subset of terminal rules in the initial grammar. This would result in an excessive increase in the
grammar description length in comparison to the derivation length, which would prohibit the operators
from improving the original grammar.

The corpus used in the experiment was a part of the SEMCORE corpus. The main purpose of this
experiment was to evaluate the ability of e-GRIDS to handle large training sets and to converge to a final
grammar in a reasonable amount of time. The time required by e-GRIDS to complete the task is shown
in Figure 11. The graph displays the time required to complete the task by two versions of e-GRIDS: the
first version uses the results of the theoretical analysis, as presented in sections 3.1.4 and 3.2.4, while the
second does not use this analysis, resorting to the way the original GRIDS searched the space of possible
grammars. The size of the beam was set to 1. As we can see from the graph, the time required by the
optimised e-GRIDS is significantly lower than the time required by the simple GRIDS-like variant. This
is very important, as it lets e-GRIDS be trained with significantly larger example sets when compared to
GRIDS, converging to a final grammar within a reasonable amount of time.

It should also be noted that this optimisation is based on a theoretical analysis where no compromises
have been made regarding the accuracy of the inferred grammars with respect to GRIDS. Further sig-
nificant improvements are possible by tolerating a small degree of inaccuracy. For example, a significant
amount of processing time is spent during the end of the training process, where e-GRIDS generates many
grammars that are very similar to each other, with insignificant differences in the description length, in
order to select the absolutely “best” one of them that will become the final grammar. By stopping
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the search when the marginal gain in description length falls below a certain threshold, one can reduce
processing time significantly. Additional optimisation is possible by calculating only the most dominant
components of the equations that resulted from the theoretical analysis.
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Figure 11: Time required by e-GRIDS, with and without the use of the theoretical analysis results.

The evaluation of the learning performance of e-GRIDS in this experiment is not straightforward as
the learning task is not well-defined. However, in order to get an indication of the ability of e-GRIDS to
generalise from large training sets, we have also performed a simple check. After training e-GRIDS with
2000 example sentences, we randomly selected 200 unseen example sentences and we counted how many
unseen sentences could be parsed by both the learned grammar, as well as by the training example set
converted to an (initial) grammar. The initial grammar was able to parse 25 sentences, while the learned
grammar was able to parse 4 more sentences, with a total score of 29 correctly parsed sentences. These
figures, provide an initial indication of e-GRIDS’ ability to converge to more general grammars than the
base case. Nevertheless, further experimentation in a more controlled experiment is needed in order to
prove the value of e-GRIDS in learning natural language CFGs.

5 Related Work

e-GRIDS shares some of its central features with earlier work in grammatical inference. We have already
mentioned that e-GRIDS originates from GRIDS [15] which is in turn based on SNPR [34, 35]. The SNPR
system uses similar learning operators as GRIDS and e-GRIDS, with the exception that possibly more
than two symbols can be handled by an operation. SNPR is also biased towards “simple” grammars, as
it uses MDL for scoring and selecting the most plausible grammars. Furthermore, like e-GRIDS, SNPR
uses heuristics for avoiding the generation of all grammars in each iteration. However, the choice of these
heuristics is based solely on intuition and may not allow SNPR to converge to the optimal grammar
according to the MDL.

Although the majority of the work in grammatical inference focuses on regular grammars, a small
number of algorithms exist that infer context-free grammars. Stolcke and Omohundro [30, 29] have
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presented an approach which infers probabilistic context-free grammars. Using a Bayesian framework,
their system employs similar learning operators as e-GRIDS and tries to find a grammar with maximal
posterior probability given the training example set. This criterion is essentially equivalent to the MDL,
employed by e-GRIDS. In [27] an algorithm for inducing context-free grammars from positive and negative
structured examples is presented. A structured example is simply an example with some parentheses
inserted to indicate the shape of the derivation tree of the grammar (structural information). The learning
algorithm employs a genetic search and the CKY algorithm [13] for converging to a final grammar. An
efficient successor of this algorithm can be found in [16]. A more recent version of this algorithm [28]
operates on partially structured examples instead of complete ones and uses a tabular representation,
leading to a more flexible and applicable algorithm, compared to its predecessor. The algorithm has
been successfully applied to various simple languages as well as to DNA sequence modelling. Synapse
[18] is another algorithm that is based on CKY. Synapse learns incrementally from positive and negative
examples, while preliminary results show that it is able to infer both ambiguous and unambiguous context-
free grammars for simple languages in reasonable time.

Various attempts have also been made to apply grammatical inference algorithms to natural language
learning tasks. In [19] a stochastic variant of Sakakibara’s algorithm is evaluated on part of the Penn
Treebank [17] with the task of learning the syntax of the language from positive structured examples.
Freitag [9] applies three grammatical inference algorithms (ALERGIA [4], ECGI [26] and a Bayesian
one) to the task of information extraction from seminar announcements. In the same work, a special
learning technique is proposed that learns “alphabet transducers”, components that re-encode text in
an abstract representation, more suitable for applying grammatical inference than plain text. In [1]
an algorithm for inferring context-free grammars that try to locate user-specified fields in structured
documents is presented. The algorithm works by creating a prefix tree automaton from all instances of
the user specified fields in the documents. These automata are generalised with the help of heuristics,
converted to regular expressions and combined to form the final context-free grammar. In [11] ALERGIA,
along with the new algorithm WIL, are applied to the task of wrapper induction for web pages. The
ABL algorithm [38] takes as input a corpus of flat (unstructured) sentences and returns a corpus of
labelled and bracketed sentences. In [37] the ABL and the EMILE algorithms are compared on the
ATIS corpus. Clark [5] presents a new algorithm that uses content distribution clustering for inducing
stochastic context-free grammars from tagged text. This algorithm is evaluated on the task of inferring
phrase structured grammars from the British National Corpus, as well as from the ATIS corpus.

The vast majority of the algorithms applied to natural language learning tasks infer grammars solely
from positive examples, as natural language learning is a characteristic task where negative examples
are rarely available. Another interesting observation regarding the application of grammatical inference
algorithms to natural language learning, is that many of these algorithms exhibit a very long convergence
time in practice. It seems that except from the absence of negative examples, natural language learning
places additional strains to the algorithms as it requires learning from languages with a large alphabet,
which are also relatively complex, necessitating the examination of a relative large set of examples. As a
result, the ability of a grammatical inference algorithm to converge in reasonable time when trained on
large example sets is not to be underestimated in this domain.

6 Conclusions

In this paper, we presented the e-GRIDS algorithm for inducing context-free grammars solely from positive
evidence. e-GRIDS utilises a heuristic based on minimum description length to avoid overgeneralisation,
a consequence of the absence of negative evidence. One of its main advantages is its compuatational
efficiency which facilitates its scalability to large example sets. The dynamic behaviour of the search
operators has been analysed theoretically, leading to the optimisation of the inference process, by not
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requiring the generation of all grammars in each iteration. The performance of e-GRIDS was evaluated
on artificially generated example sets, as well as on a large textual corpus.

Regarding the learning performance of e-GRIDS, experiments have been conducted with the help
of artificially generated examples. Our results have shown that e-GRIDS is able to infer grammars
that perform well, based on relatively small sets of training examples. The incorporated minimum
description length heuristic appears to help e-GRIDS to avoid overgeneralisation, at least for the simple
artificial languages that we examined. e-GRIDS seems to be able to generalise correctly, by inferring
grammars that successfully model the provided training example sets and at the same time do not generate
ungrammatical sentences. Another interesting feature of e-GRIDS is the ability to infer grammars able to
recognise longer example sentences than the ones presented to the algorithm during training, as e-GRIDS
is able to infer recursive grammars modelling simple recursive cases, i.e. when some word classes or
phrases tend to repeat.

More crucial for practical applications is the ability of the algorithm to scale to large example sets.
Regarding the computational efficiency of e-GRIDS, results are very satisfactory as e-GRIDS is able to
handle large example sets in significantly reduced amounts of time when compared to a simple GRIDS-
like variant. e-GRIDS utilises the results of a theoretical analysis of the dynamic behaviour of its learning
operators, where no compromises have been made regarding the accuracy of the inferred grammars with
respect to its predecessor, the GRIDS algorithm. If some small accuracy compromises were tolerated,
e-GRIDS could be made even more efficient.

The work presented here has paved the way for further improvements and extensions to the e-GRIDS
algorithm. The most interesting extensions are those required to tackle complex linguistic tasks. In this
direction, the handling of attribute grammars is particularly interesting. Learning attribute grammars is
essential for various tasks where attributes are associated to terminal features. For example, in named-
entity recognition, each word is usually associated with additional information beyond its part of speech,
such as capitalisation information or information related to whether the word has been identified as part
of a known named-entity contained in a gazetteer. This information is essential for the task of recognising
named entities. Thus, introducing attribute support in e-GRIDS will offer an ideal vehicle for modelling
linguistic tasks.

Furthermore, e-GRIDS could be evaluated further and compared to other existing algorithms. An
interesting task for future work is to compare the computational efficiency of e-GRIDS with other algo-
rithms that have been applied to tasks involving complex languages with large alphabets (e.g. various
NLP tasks). Such an evaluation will also enable the comparison of the accuracy of the grammars inferred
by e-GRIDS to those inferred by other algorithms, provided that the same experimental setting can be
reconstructed.

Another interesting aspect that can be examined as future work is the ability of e-GRIDS to learn in
an incremental manner. The current implementation of e-GRIDS offers the ability to load a grammar
inferred by e-GRIDS at an earlier time and generalise it with respect to a new set of examples. It would
be interesting to examine the learning behaviour of e-GRIDS when learning in incremental mode in
comparison to when learning in batch.

An additional facility provided by e-GRIDS is the definition of alternative strategies for applying the
learning operators. For example, e-GRIDS can operate in a way where the three operators are interleaved,
instead of each operator being applied continuously until it cannot lead to further improvement. In this
paper we have done significant work in understanding the effect of each operator separately to the induced
grammar. Future work could focus on the effect of alternative strategies for using the three operators.

Concluding, the work presented here has resulted in a new algorithm that alleviates many of the short-
comings of its predecessors, with special attention given to its robustness and computational efficiency.
We believe that e-GRIDS will be useful in modelling various subparts of natural languages and identifying
these subparts in texts, a task that cannot be easily modelled by other machine learning approaches, at
least those that expect fixed-length vectors as input. Even if some machine learning approaches can be
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applied to such tasks, grammars will still have an advantage as they are the most “natural” and straight-
forward way of locating strings in texts. Interesting tasks that fit this description include noun phrase
chunking, named-entity recognition and information extraction.
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