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Abstract. In this paper we describe a semi-automated approach for ontology 
learning. Exploiting an ontology-based multimodal information extraction 
system, the ontology learning subsystem accumulates documents that are 
insufficiently analysed and through clustering proposes new concepts, relations 
and interpretation rules to be added to the ontology. 
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1 Introduction 

   In recent years, ontologies have become extremely popular as a means for 
representing machine-readable knowledge. Driven mainly by the movement towards a 
semantic web, which tries to attach machine-readable semantic information to all of 
the resources found in the “traditional” web, ontologies address the issue of 
representation for this semantic information. Having the infrastructure for 
representing knowledge, one can construct an ontology and semantically annotate all 
the desired web resources. Realizing the difficulty of designing the grand ontology of 
the world, research on the semantic web has focused on the development of domain or 
task-specific ontologies, which have started making their appearance in fairly large 
numbers. Three major approaches have been presented for acquiring domain or task-
specific ontologies: 

• By integrating existing ontologies. 
• By constructing an ontology from scratch, or by extending (populating and 

enriching) an existing ontology, usually based on information extracted from 
a domain. 

• By specialising a generic ontology, in order to adapt it to a specific domain. 
   Acquiring domain knowledge for constructing ontologies is a resource-demanding 
and time-consuming task. Thus, the automated or semi-automated construction, 
enrichment and adaptation of ontologies, is highly desired. The process of automated 
or semi-automated construction, enrichment and adaptation of ontologies is known as 
ontology learning. Ontology learning can be decomposed into six major subtasks: 

• Term identification: Terms are the “symbols” that represent ontological 
concepts and relations, “lexicalising” them into objects of the real word. 



• Synonym identification: Synonyms are sets of terms, representing the same 
real object or event. 

• Concept identification: Concepts are the basic building blocks of an 
ontology, as they constitute the primitive elements through which the 
semantic model of the ontology is constructed. 

• Taxonomic relation identification: Relations are semantic associations 
holding between two ontological concepts. Taxonomic relations organise 
concepts into a taxonomy. 

• Non-taxonomic relation identification. 
• Rule acquisition: Rules formalise constraints over the concepts and relations 

of an ontology. 
   The work in this paper presents an approach for learning an ontology by extending 
an existing one with the use of information extracted from a thematic domain. 
Assuming an ontology-driven content analysis system able to extract domain-specific 
information and semantically represent it in the form of an ontology, the proposed 
approach identifies possible additions to the ontology, in the form of new concepts, 
relations and rules. The strength of this approach is that it can identify and propose 
possible concepts and relations even when no initial ontology exists. In other words, it 
can be used to construct an ontology from scratch. 
   This paper is organised as follows: in section 2 the semi-automated approach for 
ontology learning is presented. The co-operation of the learning approach with an 
extraction system is discussed, and the organisation of a suitable system is briefly 
presented. Then, a more detailed approach is presented focusing on the task of 
learning new concepts. Finally, section 3 presents the results of an evaluation of the 
proposed approach with the following sections presenting some alternative 
approaches and concluding the document. 

2 Ontology learning: a semi-automated approach 

  Assuming the existence of an ontology-driven information extraction system, the 
proposed learning approach is able to identify new concepts, relations and rules as 
candidates for extending the existing ontology that drives the information extraction 
system. These candidate additions are formed through similarity-based clustering of 
the extracted information. The candidate additions are shown to a domain expert 
through a suitable interface, and the expert is responsible for accepting, revising or 
rejecting them after examining the supporting evidence. 
  The proposed approach operates on the results of an ontology-driven information 
extraction engine, which must meet some requirements: 

• To represent extracted information in terms of ontological concept instances. 
• To extract relations between instances and represent them as instances of 

ontological relations. 
   In addition, an optional but useful characteristic is the adaptability of the 
information extraction engine to changes in the ontology. If the ontology is enriched 
with a new concept/relation/rule and the extraction engine can adapt to the change and 
extract instances of the new concept/relation, then the proposed learning approach 



will attempt to improve further the ontology, following for example a bootstrapping 
approach: the extracted information from the information extraction engine can is 
used to evolve the ontology, and through the evolved ontology the extraction of 
information is improved. The boostrapping process can continue until no more 
information can be extracted from the corpus. 

2.1 Semantic Extraction 

Such an extraction engine has been developed in the BOEMIE project. This engine 
implements a modular approach (Petridis et al. 2006) that comprises the following 
three level of abstraction: 

• The low-level analysis, which includes a set of modality-specific (image, 
text, video, audio) content analysis tools. 

• A modality-specific semantic interpretation engine. 
• A fusion engine, which combines interpretations for each modality. 

 

 
Figure 1: Semantic extraction from multimedia content. 

 
   The first two levels implement ontology-driven, modality-specific information 
extraction, while the last one fuses the information obtained from the previous levels 
of analysis. 
   Within BOEMIE, modality-specific analysis (levels 1 and 2) is performed as a two 
step process: the first step involves the identification of “primitive” concepts, as well 
as instances of relations between them. “Primitive” concepts, known as “mid-level” 
concepts (MLCs) in BOEMIE, are concepts whose instances can be directly identified 
in corpora of a specific modality. For example, in the textual modality the name or the 
age of a person is a mid-level or “primitive” concept, as instances of the concepts are 
associated directly with relevant text segments. The second one semantically 
interprets (with the help of reasoning rules (Espinosa et al., 2008)) the “primitive” 
concepts of each modality in combination, in order to create instances of “Composite” 
concepts that explain the event described in the document. “Composite” concepts are 
referred to as high-level concepts (HLCs) within the BOEMIE project, and cannot be 
directly identified in the content and thus associated with a content segment. For 
example, the concept person is a “composite” one, i.e., a concept that is defined as a 
composition of other concepts, such as person name, age, gender, etc. The fact that 



content analysis is separated from semantic interpretation, along with the fact that 
semantic interpretation is performed through reasoning using rules from the ontology, 
allows single-modality extraction to be adaptable to changes in the ontology.  
   Once a multimedia document has been decomposed into single-modality elements 
and each element has been analysed and semantically interpreted separately, the 
various interpretations must be fused into one or more alternative explanations of the 
multimedia document as a whole. This process is also performed through reasoning, 
using rules of the domain ontology.  
   This extracted information is given to the ontology learning module in the form of 
OWL ABoxes. These ABoxes typically include instances of MLCs, relations between 
them, HLCs, relations between them and possibly instances of the specific MLC 
“unknown” (when the low-level analysis could not classify a certain object).  
   According to the information contained in the ABoxes, the ontology learning 
system triggers either the ontology population or the ontology enrichment activity. 
The former refers to the activity of adding new individuals into the ontology. The 
latter refers to the extension of the ontology through the addition of new concepts and 
relations. The system identifies four different evolution patterns, each of them 
determining the characteristics of the ABox and defining the process to be performed 
over the ontology (figure 2).  In this paper, the focus is on the ontology enrichment 
task. More information about the whole ontology evolution activity can be found in 
(Castano et al. 2008). 

2.2 Ontology enrichment 

   In the case where the background knowledge is not sufficient to explain the 
extracted information from the processed documents, ontology enrichment is 
performed. 
   As explained above, ontology concepts in BOEMIE are separated into two main 
types, according to whether they can be identified directly in corpora (MLCs), or 
inferred through reasoning (HLCs). The BOEMIE ontology learning approach aims to 
discover both types of concepts. However, the discovery of MLCs is by its nature a 
modality-specific process, with significant dependencies upon the underlying 
information extraction system. Although the learning process is not very different 
from that of HLCs, it poses additional requirements to the extraction system and thus 
it cannot be presented in isolation from it. For this reason emphasis is given here to 
the discovery of high-level concepts. 
   The discovery of HLCs can be decomposed into the following tasks: 

• Concept Learning: It includes two subtasks: Object clustering, which 
identifies similarities between unclassified objects and clusters them into 
potentially new concepts and relations. Concept formation, which examines 
the clustered elements in order to extract common information, such as 
concepts, properties and relations, and use this to form a new concept.  

• Concept enhancement: This task is responsible for improving a candidate 
concept, through knowledge acquired from external knowledge sources, such 
as external domain ontologies or taxonomies. 



• Concept definition: This task presents the definitions of the candidate 
concepts and relations to the ontology expert. An ontology expert is expected 
to revise and finally approve them in order to be assimilated into the 
ontology.  

• Concept validation: This task performs consistency checking, by trying to 
detect possible inconsistencies caused by the addition of a new concept or 
relation to the ontology.  

• Concept assimilation: The last task is responsible for performing the required 
changes to the ontology, in order to incorporate the newly formed 
concept/relation into the ontology. 

   From the above staged process the first two tasks constitute the core of concept 
learning and the focus of this paper.  
   We have identified and addressed three concept learning scenarios, according to the 
dependency of learned concepts to existing ones: 

Specialising an existing concept. This scenario corresponds to the discovery of 
concepts that are specializations of existing ones. For example, assuming the domain 
of athletics and the existence of a concept covering all jumping sports in the domain 
ontology, this scenario examines whether a more specific concept describing a single 
sport (such as high jump or pole vault) can be learned.  

Generalising a set of existing concepts. This scenario corresponds to the 
discovery of concepts that generalize existing ones. Continuing on the above example, 
if concepts representing specific sports like pole vault and high jump already exist in 
the ontology, this scenario examines whether similarities of these two sports can be 
captured and a more abstract concept such as jumping can be learned. 

Learning a concept similar to an existing one. This scenario corresponds to the 
discovery of concepts that are similar to, but different from existing ones. An example 
of this learning scenario is to learn a concept for high jump, if a concept representing 
the sport of pole vault is already known. The difference of this scenario from the 
previous ones is that no assumption is made that the learned concepts have any 
hierarchical relations, i.e., subsume or subsumed by, existing ones. Usually the two 
similar concepts are sibling under the same parent concept, which may even not exist 
yet and need to be discovered. 

2.3 Methodology 

   The above three scenarios are modeled after three basic tree operators, namely node 
splitting (for specializing an existing concept), node merging (for generalizing a set of 
existing concepts) and creation of new nodes (for learning a concept similar to an 
existing one). Each scenario identified as applicable may propose a set of possible 
proposals, which the domain expert is expected to filter in order to guide ontology 
evolution. 
    The first scenario (specializing an existing concept) is implemented using two 
operators: specialize by contextual evidence, and specialize by property evidence. The 
former examines cases that an HLC can be separated by the presence of another 
concept. For instance, sports involving the use of some equipment (i.e. throwing 
related sports). The implementation of this operator is based on co-occurrence 



statistics: examining HLCs with strong co-occurrence information with non-
aggregated MLCs. The second operator examines cases where an HLC can be 
specialized due to its property/properties. For instance, athletes can be specialized by 
gender. This operator is implemented based on clustering property values, using 
standard clustering algorithms, on property values that have a textual representation 
(i.e. originate from the text modality). 
   The second scenario (generalizing a set of existing concepts) performs two 
operations: the identification of concepts that are “similar” and the identification of 
common properties from similar concepts. The first operation measures similarity 
between concepts, where the similarity is defined as the mean value of similarities 
among all individuals of the compared concepts. Concepts whose similarity is above a 
certain threshold (configurable by the domain expert with a default value of 0.8) are 
forwarded to the second operation, where the Least Common Subsumer is calculated 
and proposed as a possible abstraction to the domain expert. 
  The third scenario (learning a concept similar to an existing one) is implemented by 
two operators: extend by contextual evidence and reduce by property evidence. The 
first operator may propose to add a property and extend the original concept. Suppose 
for example, that the ontology contains an HLC that denotes a person, which does not 
have properties related to nationality, gender or age. Provided that there are instances 
of gender, age and nationality extracted by the semantics extraction toolkit, this 
operator may propose to add such a property and extend the original concept. This is 
implemented based on co-occurrence statistics: HLCs with strong co-occurrence 
information with non-aggregated HLCs/MLCs are examined as possible additions to 
any HLC. The second operator examines whether a property can be removed from an 
existing concept definition. An example of the latter is the case that an ontology 
contains an HLC that describes a sport like pole vault, but does not contain an HLC 
for high jump. The HLC representing pole vault may suggest the presence of a 
horizontal bar and a pole to completely represent the sport. However, instances 
representing high jump events are not expected to be associated with a pole, a 
situation that can be identified by this operator. The implementation of this operation 
is based on statistical information: if more than 30% of instances do not have a value 
for a specific property, this property is proposed for removal from the HLC under 
examination. 

3 Evaluation 

   For the purposes of evaluation, a single evaluation scenario has been constructed 
which mainly concentrates on the second learning scenario, i.e., evaluating the ability 
to learn a generalised concept from a set of inter-related existing ones. According to 
this evaluation scenario an initial ontology is constructed manually. Then the goal of 
learning is to reconstruct the basic organisation, i.e., the most “important” concepts, 
of this ontology, from manually annotated corpora. The choice of this evaluation 
scenario is based on data availability. Annotations about a single sport only are 
needed in order to assess the performance of the system in this scenario, in contrast 



with the other two, where a larger manually annotated corpus involving two or more 
sports is needed. 

3.1 Experimental setting 

In order to perform the evaluation two resources are required: an ontology and 
corpus annotated with this ontology. For the purposes of this experiment, a small 
ontology has been manually constructed, covering the domain of athletics. This 
ontology contains only mid-level concepts and relations between MLCs. The concepts 
and relations contained in the ontology are shown in table 11. 
   As shown in the table, the ontology contains mid-level concepts acting as properties 
for four high-level concepts that are not present in the ontology: athlete, sport, sport 
round and event. In addition to these concepts, the ontology contains an extensive set 
of relations between these mid-level concepts. These relations connect concepts 
belonging to the same (absent) HLC, such as a relation between the name of an 
athlete and its age or performance, but also connect MLCs that “belong” to a different 
HLC, such as a relation between the name of an athlete and the name of an event. 
   Having constructed an initial ontology, the ontology was used to manually annotate 
a textual corpus, simulating the results of an ontology-based information extraction 
process driven by the ontology. 
  All instances of concepts found in the corpus and all possible relations between these 
instances were annotated, leading to the creation of an OWL ABox for each document 
in the corpus. The corpus contained 250 HTML web pages, from various sites 
belonging to official associations, like IAAF2, EAA3 and USATFF

                                                           

4. The thematic 
domain of the collected corpus refers to the sport of high jump. 

3.2 Clustering 

The evaluation scenario seeks to reconstruct the ontology by learning new HLCs 
like athlete, sport or event, having as starting point instances of the mid-level 
concepts and the relations between them shown in table 1. This task is accomplished 
by exploiting similarities among instances, through clustering. Furthermore, in the 
concept enhancement step, the clustering results are filtered in order to form a 
proposal that an ontology expert should examine, possibly revise and finally approve. 
   Clustering is a form of machine learning and as such two questions arise when it is 
used: which clustering algorithm should be used, and how the data to be clustered can 
be more effectively represented in order to obtain the desired results. Regarding the 
clustering algorithm the Expectation Maximisation (EM) clustering algorithm (Ian et 
al. 2005), an generalization of k-means (Hartigan, 1975), was selected. Given a fixed 

 
1 Concepts are organised into “abstract” categories for presentation reasons, which causes some 
concepts to appear more than once in the table. 
2 International Association of Athletics Federations – http://www.iaaf.org/. 
3 European Athletics Association – http://www.european-athletics.org/. 
4 USA Track and Field – http://www.usatf.org/. 



number k of clusters (desired or hypothesized), the k-means algorithm assign 
observations to those clusters so that the means across clusters are as different from 
each other as possible. The EM algorithm is a generalization of k-means that allows 
for soft clusters to be formed, by associating a probability to each data point to belong 
to each of the clusters, based on one or more probability distributions. EM also tries to 
maximize the overall likelihood of the data, given the (final) clusters. EM can be 
easily combined with n-fold cross validation in order to estimate an “optimal” number 
of clusters from the data and several implementations include this feature, among 
which the WEKA (Ian et al. 2005) implementation that has been used in this 
experiment. 
 
Concepts Relations 
PersonName 
Age 
Gender 
CountryName 

personNameToAge 
personNameToCountryName 
personNameToGender 
personNameToPerformance, personNameToRanking 

Performance 
Ranking 

performanceToRanking 

SportsRoundName 
Date 

sportsRoundNameToDate 
sportsRoundNameToPerformance, sportsRoundNameToRanking 
sportsRoundNameToPersonName 

SportsName 
Date 
CityName 
StadiumName 

sportsNameToCity 
sportsNameToStadiumName 
sportsNameToDate 
sportsNameToPersonName, sportsNameToSportsRoundName 
sportsNameToPerformance, sportsNameToRanking 

SportsEventName 
Date 
CityName 
CountryName 

sportsEventNameToCityName 
sportsEventNameToCountryName 
sportsEventNameToDate 
sportsEventNameToSportsName, sportsEventNameToPersonName 

 
   The representation scheme selected as input to clustering relies on the concepts and 
relations of each instance. A single feature vector is created for each concept instance 
found in the corpus, containing the following features: 

• The concept of the instance. 
• For each binary relation that has as subject the instance, the number of times 

this instance is related to other instances with this relation type. 
   Thus, the representation scheme contains only the concept of an instance and the 
relations the instance participates in as subject of the relation.  
   The desired result of the learning process is a concept proposal, which is created by 
filtering the clustering results. The desired characteristics of such a concept proposal 
include: 

• The set of concepts the new concept “combines”. 
• The set of “internal” relations that are used to relate the concepts that are 

“combined” by the new concept. 
• Possibly, a set of “external” relations that relate this new concept with other 

“composite” – HLCs. 



   The filtering has been implemented as a two phase process. During the first phase, 
an initial concept proposal is formed by collecting all concepts and binary relations 
found in all vectors of a cluster. This essentially collects the concept of all individuals 
in the cluster, along with all relations where each individual acts as a subject. Still 
within the first phase, all gathered relations are examined, and all concepts that appear 
as a subject of a relation are added to the concept proposal. By the end of the first 
phase, the concept proposal contains all concepts the proposed concept groups, and 
the set of relations between them. Furthermore, additional relations of the proposed 
concept with other proposed concepts may exist. The task of the second phase is to 
discover and eliminate such cases. This is achieved by examining all formed concept 
propositions to identify concepts that participate in more than one proposal. These 
concepts are eliminated from all proposals that do not contain a relation where this 
concept appears as a subject. In case a concept has been removed from a proposal, all 
relations that employ this concept as subject are marked as “external” ones. Finally, 
concept proposals that are subsumed by another concept proposal are eliminated. 

3.3 Evaluation Results 

All documents in the corpus were manually annotated with instances of concepts 
from the ontology, resulting in an OWL ABox for each document. Then, each ABox 
was processed creating a feature vector for each instance in the ABox. Vectors 
generated from all ABoxes were merged into a single training corpus, which has been 
processed by the EM algorithm. 10-fold cross validation was employed to the whole 
training corpus to identify the number of clusters that exist in the training data. The 
clustering results over the training data were filtered, in order to form the proposals of 
the new concepts, which were manually examined by an ontology expert. The concept 
proposals shown in table 2 were considered correct. The same experiment was 
conducted with various numbers of documents constituting the training corpus, while 
WEKA 3.5 implementations of both the EM algorithm and 10-fold cross validation 
were used for performing the experiments. The obtained results are shown in table 3.  
 
Proposed 
Concept 

Combined 
Concepts 

“Internal” Relations “External” Relations 

Athlete PersonName, Age, 
Gender, 
CountryName 

personNameToAge, 
personNameToCountryNa
me, personNameTo\ 
Gender 
 

personNameToPerformance 
personNameToRanking 

Performance Performance, 
Ranking 

performanceToRanking  

Sport Round SportsRoundName, 
Date 

sportsRoundNameToDate 
 

sportsRoundNameToPerformance 
sportsRoundNameToRanking 
sportsRoundNameToPersonName 

Sport SportsName, Date, 
CityName, 
StadiumName 

sportsNameToCity, 
sportsNameToStadiumNam
e, sportsNameToDate 
 

sportsNameToPersonName 
sportsNameToSportsRoundName 
sportsNameToPerformance 
sportsNameToRanking 

Event SportsEventName, 
Date, CityName, 

sportsEventNameToCityNa
me, 

sportsEventNameToSportsName 
sportsEventNameToPersonName 



CountryName sportsEventNameToCountr
yName, 
sportsEventNameToDate 
 

Table 1: The concept proposals considered as correct. 
 

Corpus 
Size 

# Proposed 
Concepts 

Proposed Concepts Correct  
proposals 

% correct 
proposals 

5 3 (Event+Sport Round), (Athlete+Performance),  
(Sport + Performance) 

0          0% 

10 5 (Athlete), (Performance), (Sport Round), 
(Sport), (Event) 

5   (all) 100% 

15 5 (Athlete), (Performance), (Sport Round), 
(Sport), (Event) 

5   (all) 100% 

25 5 (Athlete), (Performance), (Sport Round), 
(Sport), (Event) 

5   (all) 100% 

50 5 (Athlete), (Performance), (Sport Round), 
(Sport), (Event) 

5   (all) 100% 

80 3 (Event),( Athlete + Performance),  
(Sport + Sport Round + Performance) 

1  (Event) 33% 

100 4 (Event), (Athlete+Performance), 
 (Sport + Performance),  

(Athlete+Sport+Sport Round+Performance) 

 
1   (Event) 

 
25% 

175 5 (Event), (Athlete+Performance), (Sport + 
Performance),  (Sport Round+Performance), 

(Athlete+Sport+Performance) 

 
1   (Event) 

 
20% 

250 4 (Event), (Athlete+Performance), 
 (Sport + Performance), 

(Athlete+Sport Round+Performance) 

 
1   (Event) 

 
25% 

Table 2: The performance of the concept learning approach for variable training corpus size 
 
The evaluation results clearly show that the proposed learning approach is able to 
make reasonable proposals for new concepts. The concept learning approach was 
particularly successful in relatively small corpora, and its proposals remained 
reasonable in larger corpora. When the training corpus contains more than 50 
documents the Performance concept cannot be recognised easily and interferes with 
the recognition of the other concepts. For example, training with 100 documents 
learns the concept Athlete and Performance combined into a single concept, denoted 
as (Athlete + Performance) in table 3. The reason for this failure is two fold: the small 
size of the concept (it has only two MLCs and a single relation) and the limited 
occurrences of the single relation in the corpus. The number of documents that 
contain instances of the performanceToRanking relation, meaning that both 
performance and ranking are described in the document, is about 20% of the corpus. 
  When training with large corpora, the number of instances of this relation is much 
lower than the number of instances of the other six *ToRanking and *ToPerformance 
relations, misleading the clustering algorithm to attach the Performance and Ranking 
concepts to the concepts that refer to them more frequently through relations, like the 
athlete, sport and sportRound concepts.  



  Thus, the inability of the proposed approach to make accurate proposals can be 
attributed mostly to data sparseness and imbalanced distribution of the concepts and 
their relations. 

4 Related Work 

The recent success of distributed and dynamic infrastructures for knowledge 
sharing has increased the need of semi-automated or automated ontology evolution 
strategies (Haase and Sure, 2004; Klein and Noy, 2003). Overviews of some proposed 
approaches in this direction are presented in (Ding and Foo, 2002; Gómez-Pérez et 
al., 2004), even if limited concrete results have appeared in the literature. In most 
recent work, formal and logic-based approaches to ontology evolution are being 
proposed.  

In (Haase and Stojanovic, 2005), the authors provide a formal model for handling 
the semantics of change phase embedded in the evolution process of an OWL 
ontology. The proposed formalization allows to define and preserve arbitrary 
consistency conditions (i.e., structural, logical, and user-defined). A six-phase 
evolution methodology has been implemented within the KAON (Oberle et al., 2004) 
infrastructure for business-oriented ontology management. It contains an algorithmic 
library that supports clustering, classification and other techniques. ASIUM (Faure et 
al., 1998) employs hierarchical clustering in order to learn concept hierarchies. 
TEXT-TO-ONTO (Maedche and Staab, 2001) uses a multi-strategy method which 
combines association rules, formal concept analysis and clustering. Also, HASTI 
(Shamsfard, 2003) learns using a combination of logical reasoning, linguistic analysis 
and heuristic methods. 

The advantage of BOEMIE approach over the above methods is that it operates 
solely on the results of information extraction that have been augmented with the 
results of reasoning, as explained in the previous sections. For example, the method 
can construct an ontology for a different domain, given the extracted entities and 
relations of this new domain by the extraction engine. Also, the distinction made 
between “primitive” and “composite” concepts helps the information extraction 
process becoming more independent of the ontology structure. 

5 Conclusions 

In this paper an approach for ontology learning has been presented that is able to 
perform semi-automated learning of concepts. Relying on an ontology-based 
information extraction system, the proposed approach exploits similarities obtained 
through clustering from extracted data, to propose possible ontology extensions to a 
domain expert. Three learning scenarios have been briefly presented that can be 
supported by the proposed approach, one of which has been evaluated. Evaluation 
results have shown that the implemented system is able to perform reasonable 
suggestions to the ontology expert. 
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